A. 浅谈如何提高污水水质检测的准确性及稳定性
显然这样的评判是不正确的。文章在详细介绍水质检测结果的目的及影响因素的基础上,指出提高水质检测结果正确性的可行措施。水质检测的直接目的就是要判别断水环境的质量状况。 一、水质检测目的 在自然界中,绝对纯净的水是不存在的。水质监测,换个说法就是监视和测定水体中污染物的种类,及各种污染物的浓度和变化趋势。是一个用以评价水质状况的过程。水质监测的范围十分广泛,既包括未被污染的天然水,也包括已受污染的江、河、湖、海、地下水及各种各样的工业排水。水质监测的主要监测项目从污染物的指标和种类大体可分为两大类: 一类是反映水质状况的综合指标,例如水质的温度、色度、浊度、PH 值、悬浮物和生物需氧量等;另一类是水中含有的一些有毒物质,如酚、氰、砷、铅、铬、镉、汞和有机农药等。以上两类方法不仅可以评判饮用水的水质,也可以客观的评价江河和海洋水质的状况,但是在评价江河湖海水质的质量时,除上述方法外,还必须进行流速和流量的测定。 针对于地表水及地下水,作为检测部门要进行经常性监测,因为这些水源是与我们生命与生活息息相关的重要构成部分,全民的生活及生产需要都离不开这些水源的供给。 水质监测的质量准确在这部分的应用是相当重要和必不可缺的。当然,水质的好坏直接与环境的优劣相辅相成,水质的变化优劣也将在未来导致我们生存环境的日益恶化。以上说明,水质监测的目的并不止仅仅在于为我们的生活生产用水提供保障,长远的目标更是为了环境的管理和科学研究提供数据和依据。 二、检测数据准确性的影响因素 对多种水样进行检测,其中包括海水、中水、湖水、深井水、矿井疏水、水库水、反渗透装置出水(R0产水)、超滤装置出水等并采用不同方法对同种水样进行多次检测,发现不同方法往往带来较大的差异。因此,应针对不同水质选择不同的检测方法,若方法选择不当,会影响到检测结果的准确性。 检测仪器除了要按说明书正确使用外,还要按时送检,这是保证测定结果准确性的关键。 玻璃器皿、试剂、药品等在使用前一定要确认有无被污染。有些药剂经过多人使用后,不可避免带来污染,会对某些测定项目产生影响。 另外在水质检测过程中能够影响水质检测的因素主要有来源因素和类别因素。 1、 类别因素 负责检验水质的人员必须根据不同的水质,采取相应不同的水质监测方法。例如地球地面水质监测方法与地下水质监测方法就各有不同。通常情况下地面水质的收集可以通过对水体的水位流速及流向的变化,一些水体沿岸城市分布、工业化工厂布局、污染源及其排污情况、以及本城市的给排水情况等进行基础资料的收集并实施监测。但是城市地下水质的采集则需要根据不同水质区域内的不同的城市发展和工业分布以及土地利用,特别是要对地下工程的应用来了解查清其中的污水灌溉、排污纳污等情况来进行水样收集。如果检测人员不能正确区别各类水质的差别,也会成为导致影响水质监测的因素之一。 2、 来源因素 来源因素是指进行水质监测的过程中,工作人员如果混淆了被监测的水质来源的情况下,也可能导致无法正确提供解决水质问题的方式方法。比如某个地区的水质已经受到污染,基本上来源可以确分为工业废水和城市污水。就工业废水而言,它的水样采样地点都是在车间或车间处理设备的废水排放口设置采样点。 能测出的一类污染物可能会有汞、镉、砷、铅、有机氯化物等。如果把采样点放在工厂废水总排放口。则是测二类污染物,如悬浮物、硫化物、氰化物,有机磷化合物、硝基苯等。相对于城市污水的监测原理,则是检测部门在一个城市的主要排污口或总排污口设点采样,然后根据城市污水管的不同位置以及污水进入水体的排放口,也有在污水处理厂的污水进出口处设点,对城市的生活水质进行准确监测处理。因此,工作人员做好对水质进行监测和分析,是最终能获得水质准确结果的关键因素。 三、测数据的质量控制及提高水质检测的准确性措施 1、数据的质量控制 (1)检测之前应确定水样种类,然后根据水样的性质选择分析方法,以增加分析结果的可靠性。 (2)检测过程中重复2次测定,并通过加标回收率试验进行质量控制。这样做虽然增加了工作量,但对数据的准确性起到关键的作用。 (3)检查仪器、玻璃器皿、试剂、药品等是否符合要求,保证所配制药品在正常使用期限内,对使用期限短且易变质的药品应现配现用。 另外,在检测中,需对各项检测指标的原始记录进行规范,各项检测指标应根据相应检测标准进行检测,所有必须填写的信息都应反映到原始记录中。 2、 提高水质的措施(1)检测点污水渗透容易造成地下水的块状污染.在缺乏卫生设施的居民区尤其严重,这时候的水质检测点不但要设在水流的垂直方向上还应该在水流的平行方向上也设置检测点。这样就能够防止污染物在两个方向上的扩散程度。对与渗透度比较小的蓄水层及渗井、渗坑等地区我们的检测点应该设置在距离他们比较近的地方,这样就不容易造成污染。在检测水体的时候,我们要综合考虑污染物的分布和扩散形式,根据地质条件、水源开采情况以及水化学特征等多种因素来确定水质检测点。这就是根据污染源的物理位置来进行水质检测点的选择。 (2)科学的管理方法 科学的管理方法对水质检测结果的正确性有很大的影响。在对传统的水质检测的方法使用的同时,我们要想保证正确的水质检测结果,应该大量使用专业的检测设备仪器。现在的设备仪器功能强大,不但能提高测量数据的准确性、可靠性,还能够实现快速检测的目的。可以大大节省取样、化验
B. 浅谈农药残留检测的前处理技术
农药残留检测常用前处理方法汇总!
一、振荡漂洗法
将待测样品浸泡于提取溶剂中,若有必要可加以振荡以加速扩散,适用于附着在样品表面的农药以及叶
类样品中的非内吸性农药。
二、匀浆萃取法
将一定量的样品置于匀浆杯中,加入提取剂,快速匀浆几分钟,然后过滤出提取溶剂净化后进行分析。
有时为了使样品更具代表性,需加大样品量,这时可先将大量样品匀浆,然后称取一定量的匀浆后的样
品用萃取溶剂萃取。 尤其适用于叶类及果实样品,简便、快速。
三、索氏提取法
大多数农药是脂溶性的,所以一般采取提取脂肪的方法 ,将经分散而干燥的样品用无水乙醚或石油醚
等溶剂提取使样品中的脂肪和农残进入溶剂中,再净化浓缩即可分析 。
适用谷物及其制品、干果、脱水蔬菜、茶叶、干饲料等样品 。无水乙醚或石油醚等溶剂,提取效率高
,操作简便。
需要注意:提取时间长,消耗大量的溶剂必须考虑被测物的稳定性;含水量过高的水果蔬菜不宜作为分
析对象。
四、液-液萃取法
向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质由原溶液转移到萃取剂的过程
向溶液试样加入非极性或水溶性的溶剂,用振荡等方法来辅助提取试样中的溶质。适合液态样品,或经
过其他方法溶剂提取后的液态基质。常用非极性的溶剂有正己烷、苯、乙酸乙酯;常用的水溶性溶剂有
二氯甲烷、甲醇、乙、丙酮以及水。
注意:不需要昂贵的设备和特殊仪器,操作简便;常用到大体积的溶剂,而在振荡分配过程中则要控制
溶剂体积,费时费力,容易引起误差。
五、超声波提取方法
(超声波辅助萃取法,Ultrasonic extraction)
超声波是一种高频率的声波,利用空化作用产生的能量,用溶剂将各类食品中残留农药提取出来。
将样品放在超声波清洗机,利用超声波来促进提取适合液态样品,或经过其他方法溶剂提取后的液态基
质。适用溶剂包括甲醇,乙醇,丙酮,二氯甲烷,苯等, 简便,提取温度低、提取率高,提取时间短。
注意:超声波提取器功率较大,噪音比较大,对容器壁的厚薄及容器放置位置要求较高,目前仅在实验
室内使用,难以应用到大规模生产上。
六、固相萃取法
利用吸附剂对待测组分与干扰杂质的吸附能力的差异,在层析柱中加入一种或几种吸附剂,再加入测样
本提取液,用淋洗液洗脱 。适用于分离保留性质差别很大的化合物 ;常用吸附剂包括氟罗里硅土,氧
化铝,硅藻土等 。
优缺点:操作简单,适用面广 ;有机溶剂的使用量较大,且不适于大批量样品的前处理。
七、固相微萃取法
1.固相微萃取装置主要由手柄和萃取头2部分构成,萃取头是涂有不同吸附剂的熔融纤维,选择的基本
原则是“相似相溶原理”;
2.用极性涂层萃取极性化合物,用非极性涂层萃取非极性化合物。集采集、浓缩于一体,简单、方便、
无溶剂,不会造成二次污染;
3.若在样品中加入适当的内标进行定量分析,其重现性和精密度都非常好。
八、超临界流体萃取法
利用超临界流体高密度、粘度小、渗透能力强等特点,能快速、高效将被测物从样品基质中分离 ,先
通过升压、升温使其达到超临界状态,在该状态下萃取样品,再通过减压、降温或吸附收集后分析,对
热不稳定、难挥发性的烃类,非极性脂溶化合物,二氧化碳,水,乙烯,丙酮,乙烷等 可进行族选择
性萃取,萃取物不会改变其原来的性质,萃取过程简单易于调节,萃取装置较昂贵,不适合分析水样和
极性较强的物质。
九、自制提取装置
将超声波的空化效能与固相萃取的特性结合起来。 超声波提取后,再通过固相萃取柱来纯化。适用于
浓缩样品中的物质、分离保留性质差别很大的化合物,或经过其他方法溶剂提取后的液态基质,常用试
剂水,乙烯,丙酮,乙烷等;吸附剂氟罗里硅土,氧化铝,硅藻土等,集合了超声波提取和固相萃取两
种方法的优点,适合多样品的同时处理需要定时清洗。
十、微波辅助萃取法
1.微波能是一种非离子辐射,它使分子中的离子发生位移和偶极矩,其中有机物受微波辐射使其分子排
列成行,又迅速恢复到无序状态。这种反复进行的分子运动,让样品液迅速加热;
2.微波穿透力强,能深入机体内部,辐射能迅速传遍整个样品液,而不使其表面过热。内部的分子运动
溶剂与样品液充分作用,加速了提取过程。适用于 土壤、食品、饲料等固体物中的有机物,植物及肉
类食品中的农残提取 简便、快速。
该法在缩短萃取时间和提高萃取效率的同时也使萃取液中干扰物质的浓度增大,加重了净化步骤的负担。
十一、加速溶剂萃取法
(ASE,accelerated solvent extraction) 该法是在较高温度(20~2000C)和压力条件
(10.3~20.6MPa)下,用有机溶剂萃取 。
1.适用于固体和半固体样品;
2.在食品分析中有广泛的应用;
3.提取复杂的生物基质中有机氯农药;
4.处理中毒样品 ;
5.有机溶剂用量少(1g样品仅需1.5ml溶剂);
6.样品处理时间短(12~20min);
7.回收率好;
8.处理中毒样品,如氟乙酰胺、毒鼠强,更显示出其萃取快速的优越性,能为及时抢救赢得时间。
十二、基质固相分散萃取法
(MSPD,matrix solid phase dispersion) 此技术使分析者能同时制备、萃取和净化样品
该技术包括在玻璃研钵中将键合相载体和组织基质混合,用玻璃杵将其研碎成近乎均质分散的组织细胞
和基质成分。组织与涂以C18或C3、C8的硅胶迅速混合产生半固体物质,将半固体物质填充于柱中。根
据不同分析物在聚合物/组织基质中的溶解度不同进行洗脱。这样获得的萃取物在仪器分析前不需要再
处理。
1.特别适合于食品中药物、污染物及农残分析;
2.几乎囊括了所有的固体样品;
3.对于很难匀浆和均质的样品,尤其适于处理。
十三、衍生化技术
通过化学反应将样品中难以分析检测的目标化合物定量转化成另一易于分析检测的化合物,通过后者的
?分析检测对可疑目标化合物进行定性和定量分析。