导航:首页 > 解决方法 > 小学数学问题解决的方法体系

小学数学问题解决的方法体系

发布时间:2022-02-07 23:20:29

A. 分析小学数学解决问题的方法有哪些

教师应根据教学的实际,让学生把所学知识和周围的生活环境相联系,帮助他们在形成知识、技能的同时,感受数学应用范围的广泛。 2.收集应用事例,加深学生对数学应用的理解与体会 随着科学技术的飞速发展,数学的发展涉及的领域越来越广泛。数字化的家电系列,宇航工程、临床医学、市场的调查与预测、气象学……无处不体现数学的广泛应用。让学生搜集这些信息,既可以帮助学生了解数学的发展,体会数学的价值,激发学生学好数学的勇气与信心,更可以帮助学生领悟数学知识的应用过程。例如:在统计的初步认识教学中,学生搜集了自家几个月用水的情况,通过收集、描述、分析数据(人口的多少、老人和孩子等诸多因素)的过程,得出了自家用水是否合理的判断,并做出今后用水情况的决策。既渗透了环保教育,又使学生感受到数学知识的应用。 3.引导学生从日常生活中寻找数学问题: 罗杰斯认为:“倘若要使学生全身心地投入学习活动,那就必须让学生面对他们个人有意义的或有关的问题。但我们的教育正在力图把学生与生活所有的现实隔绝开来,这种隔绝对意义学习构成一种障碍。然而我们希望让学生成为一个自由的和负责的个体的话,就得让他们直接面对各种现实问题。” 日常生活中有大量的数学问题,结合数学内容选择一些简单的问题加以分析、解决,这对从小培养学生的数学应用意识和数学观念尤为重要,同时也促进学生进一步理解所学的内容。 如在三年级学生认识长方形的周长之后,我是这样做的:让三四个学生为一组,量一量教室内门框、窗框、镜框等长方形的长与宽,

并设计一下做这些物品需多少材料。最好再给每种不同的材料标上单价,让他们计算一下,选择怎样的材料,用什么方案,可以既经济实惠,又满足需要。 4.指导学生从数学内部寻找数学问题: 数学内部充满着各种问题,虽然通过前人的多年努力,已经解决了很多问题,但是学生学习作为再次创造的过程,仍有一个不断探究、解决新问题的过程。在数学内部,学生接触最多的问题是解答习题,而解答习题是解决问题的一种特殊形式。教师可以从问题的角度出发,指导学生对问题正确加以理解,明确已知的条件和要达到的目标,作出合理的假设,寻求通向目标的可能途径,确定最优的解决方案。要使学生从中养成习惯,形成技能,并迁移到其他方面,使他们拥有问题解决的意识,提高思维水平。 例如:计算12345+23456.这是一道多位数的加法,学生计算后,教师可以改变题目的形式,出题“CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表几(不同的字母代表不同的数字)”。这显然为学生创设了一个问题解决的情景。因为解答用字母来表示两个加数的加法,对他们来说是一个没有遇到过的问题,而且解此题时学生不仅要具有加法知识,还须具备假设和推理能力。 5.引导学生联系生活实际解决数学问题: 小学生经过课堂学习能够解决一些简单的实际问题,但是这些实际问题已经经过数学处理,各种条件与问题都比较明显,然而实际生活中的问题并非如此容易,因此要多联系生活实际,从学生遇到的疑惑、矛盾入手,引出新知识的实际问题或情境。

B. 小学解决问题数学方法有哪些

手脑并用是提高创新意识的有效方法。学生的实际动手能力是衡量人才的重要重要指标,是从小学会学习、学会生活的重要内容。在教学中,可以引导学生利用实际操作这项活动来帮助学生掌握知识,具有创造性、开拓性。符合国家关于活动课开设的目的和意义。有利于数学教学的辅助过程,有利于创新能力的培养。在教学活动中,教师要注重提供各种机会让学生参与活动,使学生在参与过程中掌握方法,促进思维的发展。教学中,经常设置一些悬念性的问题,鼓励学生探索,唤起学生创新意识,改变教师的主体。学生的创新潜能得到挖掘,逐步形成创新能力。
优化教学模式,深化创新意识培养:传统意义上教学的几个重要的环节一般是:导入新课—新授—巩固练习—布置作业。经过多年的改进,形式虽然有变化,但实质却没有什么改动。其实,课堂不必套用这个模式,对小学来说,一本正经的像对成人那样传授知识,未免太呆板了些。活动教学、游戏教学、发现教学、探究教学、数学建模教学、竞赛教学,根据不同的教学内容,都是可以采取的。比如:导入这一环节,完全可以用昀新的教学词汇—创设情境来表示和演绎,情境是教师和学生共同面对的,它必然会起到导入的作用,但更重要的是面对着一个问题,借以引起学生的兴趣,激发学生的求知欲望,培养寻求解决问题的不同方法的意识。再比如:新授这一环节,完全可以改成探索与讨论,而巩固环节可以换成实践与反思等等,这些改变并不是换换词语那样简单,更重要的是教学观念的改变与教学方式的更新,通过这些改变增强学生的主动性,从而更好的提高学生创新意识。
3
小学数学方法二
动手操作的策略:例如:教学四年级下册第五单元《三角形》中《三角形边的关系》时,我让学生自己探索任意三根小棒能否围成三角形,先猜想,再让学生动手操作试围,验证自己的猜想。实验结果有所不同,这样使学生在具体的操作过程中产生思维冲突,从而提出数学问题“为什么有的能围成,有的围不成呢?”,有效地激发了学生进一步探究的欲望,在进一步的探索交流中得出结论,即较短两条边的和等于或小于第三边时不能围成三角形,只有较短两边的和大于第三边时才能围成三角形。
再如:教学《三角形的内角和》一课时,根据学生已有的知识经验和生活经验,课前有一部分学生就能说出三角形内角和是180°这一知识点。但是如何让学生明白为什么三角形的内角和是180°,而不是仅仅知道这个结论而已。教学中我引导学生通过量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活动,找到了几种验证三角形内角和是180°的方法,学生通过动手操作,自主探究得出结论后,体验到了成功的喜悦。还有我在教《梯形的面积》时,引导学生探究“怎样计算梯形的面积?”这一问题时,我给学生提供了硬纸片的梯形学具,把实际操作策略的选择权留给学生,学生将这个问题转化为一个已知的问题进行推导研究。学生在自主探索实现操作策略的多样化:有的学生将它剪为两个三角形;有的通过割、补将它转化为长方形;或者把两个完全一样的梯形拼成一个平行四边形。这种开放性的操作策略,不仅有可能获得问题解决,而且还能培养学生的创造性思维。

C. 如何解决小学数学问题的策略

画图策略
在解题过程中,运用画图的方法,画出与题意相关的示意图,借助示意图来帮助推理、思考,这是小学数学解决问题中最常用的一种策略。
常见的画图方式有:线段图、集合图等。
将疑难问题的文字“翻译成图”,能够立竿见影地理清思路,找到解题策略。
转化策略
转化也是小学数学解决问题中常用的一种方法,能把较复杂的问题转化为简单问题,能把未知的问题变为已知的问题。
列表策略
列表策略,又叫列举策略。是将问题的条件信息用表格的形式列举出来,便于从中发现问题、分析数量关系,从而排除非数学信息的干扰,同时也便于找到解决问题的方法。
枚举策略

在解决一些特殊问题时,有时候没有办法列算式,这个时候列举出被研究对象的所有可能情况,则能使问题比较容易地获得解决。和列表策略一样,在枚举时也要做到有序思考,这样才能做到不重不漏。
替换策略

“替”,顾名思义就是“替代”;“换”,自然就是“更换”的意思。替换策略是用来解决几个数量与总量之间的关系问题。运用替换策略能把两个量与总量的关系简化为一个量与总量的关系,从而有助于解决问题。
逆推策略

逆推,即“逆回来、倒过去”推想,也叫倒推法、还原法。就是从事情的结果出发,倒过去推想它最开始是怎样的。当我们已知“现在”的状态,要去求“原来”时,常常可以运用逆推策略帮助思考。

D. 小学数学解决问题的四个步骤

解决问题三步骤的实施

(一)阅读与理解

1.找信息

找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。

2.提问题

提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。

3.示意图

示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。

(二)分析与解答

1.数量关系

心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。

数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。

2.列式计算

列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。

3.回顾与反思

回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。

总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。

E. 小学数学解决问题的一般策略有哪些

1.归纳法。就是用联系、运动、发展变化的观点看待问题,把有待解决的问题,通过某种转化过程,归结为一类已经解决或容易解决的问题。其实质就是对问题进行变形,促使矛盾转化。例如:完全归纳法(数学归纳法)与不完全归纳法。

2.假设法。就是先对题目中的已知条件或问题作出某种假设,然后,按照题中的已知条件进行推算,根据数量上出现矛盾,加在适当调整,最后找到正确答案的一种解题思想方法。如“鸡兔同笼”问题。

3.逆推法。采用与事情发生过程相反的顺序思考的解题方法做做逆推法。

4.列举筛选法。解某些数学题时,有时要根据题目的一部分条件,把可能的答案一一列举出来,然后根据另一部分条件检验,筛选出题目的答案。

5.图解法。解数学题时,可以设法把条件、问题以及它们的数量关系用线段图、韦恩图等图形反映上来,使我们能借助图形进行分析、推理,寻找解题途径,这种方法叫图解法。

6.类比法。

“类比”是根据两个或两类事物有些属性相同,推测它们另一些属性也可能相同的推理。在解题中,根据题中所求问题与已知条件相类似的关系,利用类比推理,找类比模型,从而寻找解题途径的方法叫类比法。

7.小学数学中常用逻辑推理法。

(1)分析与综合法

分析法是从需证的结论出发,以一系列已知定义、定理为依据逐步逆溯,从而达到已知条件的推理方法。特别是应用题,几何证明题等。

综合法是从题设条件出发,以一系列已知定义、定理为依据,逐步推演出所需证明的结论的推理方法。

(2)归纳与演绎法

归纳与演绎是相互联系着的,归纳得出的结论,可以用演绎法去验证,演绎的前提是通过归纳得出的。

由特殊性前提引出一般性结论的推理叫做归纳推理。以归纳推理为主要内容的科学研究方法叫做归纳法。一般地,在小学数学课中,运算定律,基本性质,法则等都是运用不完全归纳让学生从头从一般原理到特殊事例的推理叫做演绎推理。以演绎推理的主要内容的科学研究方法叫演绎法。一般地,在小学数学教材中,当以归纳推理的形式得出运算定律,基本性质、法则、公式后,都再以演绎推理的形式进行计算。如三段论(由大前提、小前提、结论构成)

(3) 观察与实验法

(4)联想法

(5)猜想法

(6)对应法

F. 小学数学中解决问题的策略有哪些

要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。

一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。

二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。

关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。

G. 总结小学数学教学中如何解决问题的方法和要领

培养数学问题解决的有效策略
数学教学不可能把各式各样的数学问题一一讲全,把解答的方法都教给学生。数学教学的功能是帮助学生习得数学问题解决的一些常用的基本方法,并引导他们灵活应用这些方法,适应问题的千变万化,即“策略”。小学生具有数学问题解决的策略表现为:积累了一些常用的解决问题的方法;经常灵活地应用方法解决问题;对合理地使用方法有所体验、有些经验。

H. 小学数学问题解决分为哪几个阶段

一、认真读题审题

读题就是为了审题,弄清楚题目所讲的意思,明确要求的问题,以及题目中所含的条件。读题一般读三遍,第一遍知道大概讲什么,第二遍明确要求的问题,带着问题要读一遍,这时要读慢一点,边读边想,把自己认为重要的地方圈出来,想想要求题目中的问题要用到哪些条件,第三遍边读边分析它们之间的数量关系。

二、分析数量关系

分析题目最好要利用好稿纸,要在稿纸上写写画画,可以摘录关键词,可以画画线段图,有的题目还可以用实物演示一下,自己表演一下,这样直观形象,想起来就容易多了。

三、列出算式计算

分析好数量关系后就可以列式计算了,如果是平时做题,还可以想想还可以怎么解答,让一道题从不同角度用不同的方法去分析解答,达到一题多解的训练,拓展解题的思路。

四、检验是否正确

题目做完,要回顾一下解题思路,看看每一步是否合理,解题时一般有两种分析思路,一种从问题入手,再去找哪些条件可以求出来,另一种是从条件入手,看哪些条件可以求出哪些问题,直到解答出来。回顾思路时,可以换一种思路来检验一下自己做对了没有,从问题入手的,可以从条件入手来检验。

(8)小学数学问题解决的方法体系扩展阅读

研究者提出了问题解决的五个作用:

(1)作为数学教学的正当理由。在数学课程中,存在着与现实生活有联系的问题,能使学生和教师相信数学是有价值的。

(2)为学科课题提供具体的学习动力。教师在介绍各种课题时,通常会运用各种问题,含蓄或明确地让学生懂得:如果掌握了下节课的内容,就能解决这类问题。

(3)作为娱乐。娱乐性问题是用来激发学生的学习兴趣的,这些问题表明“数学很有趣”,而且学生掌握的技能还可以用于娱乐。

(4)作为开发新技能的手段。运用循序渐进的问题,可以将学生引导到新的学科知识中,并为他们提供可以讨论学科知识技巧的背景。

(5) 作为实践。先教学生一些技巧,再提出一些问题,让他们实践,直到掌握这一技巧。

阅读全文

与小学数学问题解决的方法体系相关的资料

热点内容
盘头发的简单方法有发夹 浏览:443
智能流量计校验的方法及步骤 浏览:519
稚优泉666涂唇釉的正确方法 浏览:533
日本超市黄瓜的腌制方法及步骤 浏览:587
手工焊有哪些焊接方法 浏览:904
电脑主机组装方法 浏览:289
种梨怎么种植方法 浏览:657
记乐谱的方法有哪些 浏览:114
莲子功效与作用及食用方法 浏览:59
更改打印机时间设置在哪里设置方法 浏览:560
兰花红夫人的种植方法 浏览:430
少年白癜风采用哪些方法治疗 浏览:759
大力马线的编织方法视频 浏览:788
画幅的正确方法视频 浏览:86
水电布线教学方法 浏览:797
动画教学方法运用教学计划 浏览:850
测量有源二端网络的方法及优缺点 浏览:975
把花朵比作眼睛是什么修辞方法 浏览:769
教室强电分组最佳方法 浏览:932
校园节能减排研究方法 浏览:154