1. 初中数学解题方法归纳总结
想要在初中学好数学,学会解题是关键。那么初中数学解题方法有哪些呢?为了帮助同学们更好的学习数学,我给大家整理了初中数学解题方法。
初中数学解题方法归纳
1. 观察与实验
( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类
( 1 )比较法
是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般
( 1 )特殊化的方法
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法
4. 联想与猜想
( 1 )类比联想
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
( 2 )归纳猜想
牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。
5. 换元与配方
( 1 )换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。
( 2 )配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式
6. 构造法与待定系数法
( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。
( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
7. 公式法与反证法
( 1 )公式法
利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:
( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。
初中学数学解题技巧
1. 数学探索题
所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。
条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。
结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。
规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。
活动型探索题:让学生参与一定的社会实践,在课内和课外的活动中,通过探究完成问题解决。
推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。
探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的思维方式的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、反思、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。
2. 数学情境题
情境题是以一段生活实际、故事、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。
如老师在讲有理数的混合运算时,
3. 数学开放题
数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。
( 1 )数学开放题一般具有下列特征
①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。
②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。
③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。
④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。
⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。
⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。
( 2 )对数学开放题的分类
从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。
从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的创新思维,培养了学生的创新技能,提高了学生的创新能力。
( 3 )以数学开放题为载体的教学特征
①师生关系开放:教师与学生成为问题解决的共同合作者和研究者
②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。
③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。
( 4 )开放题的教育价值
有利于培养学生良好的思维品质;
有助于学生主体意识的形成;
有利于全体学生的参与,实现教学的民主性和合作性;
有利于学生体验成功、树立信心,增强学习的兴趣;
有助于提高学生解决问题的能力。
4. 数学建模题(初中数学建模题也可以看作是数学应用题)
数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一
初中数学应用问题类型
( 1 )探求结论型数学应用问题
根据命题中所给出的条件,要求找出一个或一个以上的正确结论
( 2 )跨学科的数学应用问题
①数学与物理
②数学与生化
以上两题是与生物和化学有关的问题,体现了数学在生化学科的应用。
总之,数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。中考数学应用问题热点题型主要包括生活、统计、测量、设计、决策、销售、开放探索、跨学科等等,中考在强化学生应用意识和应用能力方面发挥及其良好的导向功能。这就要求我们在平时教学中善于挖掘课本例题、习题的潜在的应用功能。巧妙地将课本中具有典型意义的数学问题回归生活、生产的原型,创设一个实际背景,改造成有深刻数学内涵的实际问题,以增强应用意识,发展数学建模能力。
四、掌握初中数学解题策略提来提高数学学习效率
(1)认真分析问题,找解题准切入点
由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。
此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。
(2)发挥想象力,借助面积出奇制胜
面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。例1、 若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1
由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。
此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。
(3)巧取特殊值,以简代繁
初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养,因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解题的关键。
例2、分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适从了。
(4)巧妙转换,过渡求解法
在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。
例如:已知:AB为半圆的直径,其长度为30 cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。
本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形OCD的面积,这样该题的解题思维就能一目了然了。
综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效率,增强学习数学的能力。
猜你喜欢:
1. 初中数学规律题公式
2. 初中数学学习方法与技巧
3. 关于初中数学的学习方法有哪些
4. 初一数学解题技巧
5. 初中数学学习方法的六大要点
2. 初一数学解题方法与技巧分享
数学大题都是有一些技巧的,下面我就大家整理一下初一数学解题方法与技巧分享,仅供参考。
数学选择题和填空题解题技巧
排除选项法
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
直接求解法
有些选择题本身就是由一些填空题、判断题、 解答题 改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。
初一数学应用题学法指导1.图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。(例略)
2.亲身体验法如讲逆水行船与顺水行船问题。有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。
总结归纳,对易错题型重点训练,强化 知识点
这项工作,不仅仅是老师的事,更要求学生能够独立进行。
当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。
以上就是我为大家整理的初一数学解题方法与技巧分享。
3. 初一数学应用题解题方法和技巧
初一数学应用题解题方法和技巧如下:
1.图解分析法:
这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。
3.直观分析法:
如浓度问题,首先要讲清百分浓度的含义,同时讲清百分浓度的计算方法。
其次重要的是上课前要准备几个杯子,称好一定重量的水,和好几小包盐进教室,以便讲例题用。
4. 初一数学常用的解题方法汇总
学会初一数学的解题方法,能让你在学习数学的路上事半功倍。下面是我分享的初一数学常用的解题方法,一起来看看吧。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等种数学知识互相渗透,有利于问题的解决。
首先、课前预习
课前预习很多同学和家长会忽视而宁愿花大量时间去辅导班。其实按时做好课前预习,听课的时候就能有重点。重点听自己不理解的地方,做好课堂笔记。课后及时温习。学习就是一个循序渐进的过程,不会一口吃个胖子;与其贪多嚼不烂,不如按照正常的学习规律来,既不耽误学习又不耽误玩。
第二、打好数学基础。
数学学习中,数学概念、基本定理定义和公式是基础。同学们一定要先理解,需要求证的学会求证,能推导的自己会推导;这样才能理解记忆;真正学会。如果连基本概念和定理定义、公式都不理解,记不住;怎么会做题呢?所以,打好基础是关键。
第三、熟悉例题,吃透课本。
数学考试和中考都是以课本为基础命题的。因此,书上的例题一定要弄懂吃透。把课本上所有的知识点都过一遍;重点记忆。
第四、课后练习及时做
对于课后练习一定要在学完一课后及时做。巩固所学知识;不懂的及时问老师或者同学。
第五、做同步训练题。
数学公式和定理的运用,还要考平时做一定的同步训练题。但是不能贪多,做过的一定要弄会,搞懂。总结别人的方法,找出差距,弥补不足。
第六、多总结对比记忆。
数学中也有很多相似或相近的定理定义,公式。要善于总结他们的区别与联系。才能记得牢记得快。做题也是,多总结好的解题方法,技巧;才会百尺竿头更进一步。
学习方法因人而异,同学们要多总结,结合自身找到适合自己的方法。初中数学并不难,相信大家都能学好。
一、要有端正的写作业的态度。
从思想上要认真对待,如果养成懒散的习惯了,以后问题就会更多,今日不努力,明日就会失去更多,再要改善起来,就更难了。因为一个好习惯的养成是要下决心去坚持的,虽然由于以前的习惯不好或者遗留问题太多导致在坚持的过程中会容易产生抵触的情绪,甚至有时还容易放弃,但是要知道,一旦好习惯养成之后,原来所经常遇到的问题就会越来越少,成绩也自然提高了起来。
二、注意力一定要集中。
不要在写作业的时候干其他的事或想其他事,一心不能二用。尽快地反作业做完了才能够去做别的事情。
三、要学会总结。
如果在看到题目后能很快反映出这题目所需要的知识点,那么做题速度就会提高,在做题之后也要总结一下思路。多总结一下会发现很多题目都有规律可循,这样可以起到事半功倍的效果,以后再碰到类似问题时,就可以很轻松了。
四、营造一个良好的写作业环境。
孩子写作业时尽量保持安静,书桌上除了放书、学习用品等之外,不要放其他的东西,以免分散他们的注意力。家长也不要过度的唠叨和训斥,要多鼓励孩子。
3加强计算能力
计算一直是数学的一个核心内容,几乎每一个数学问题都需要通过计算。那么,计算的准确率就显得尤为重要了。想要提高数学成绩,计算的准确率是一定要提高的。那么如何提高计算的准确率呢?这里我也同样给出了几条建议。
一、强化学生的有意注意和良好的计算习惯
(1)仔细审题的习惯。拿到题目后认真审题,看清题目的要求,想明白过程中应该注意哪些问题。
(2)细心检查的习惯。先从思路上检查一遍看是否有遗漏,再将答案代回原来的问题验算。若为计算题则仔细检查每一个步骤。
(3)认真书写的习惯。书写要干净整洁,这样能使自己在做题时看清题目,避免
错误的发生。
二、强化口算能力
任何计算都是以口算为基础的,口算能力的高低,直接影响到学生其它运算能力的提高。要提高口算能力,首先要抓好口算的基本训练,所以应当经常性的进行一些口算的练习。
三、速算巧算
平时在做计算的时候要注意运算技巧地运用,加快运算速度,特别是在分数计算的部分,有时候数字比较大比较多,通分将会很困难,这时可能把分母写成乘积的形式将是一种更好的选择。
四、强化估算能力
很多的问题,特别是应用题,当看到问题后就能够大概地去估计一下结果大概会是一个什么范围的数,有了这种估计能力之后,有时候发生计算错误就能够一下子看出来。所以在做题之前我们也可以估计一下答案的范围,如果算得的答案不在这个范围,那就需要我们去检查了。
五、合理利用一些数的性质
5. 初一数学答题解题方法与技巧
数学的大题解题是有很多方法的,下面我就大家整理一下初一数学答题解题方法与技巧,仅供参考。
图解分析法这实际是一种模拟法
具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。
因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种 数学 方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
亲身体验法如讲逆水行船与顺水行船问题
有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。
换元法是数学中一个非常重要而且应用十分广泛的 解题方法 。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
审题的仔细性
仔细审题是正确理解题目的基本意思,是正确解题的基础。在做应用题过程中,学生审题不清楚、不仔细,是做错题的主要原因。如例1:小青蛙说:“我每天吃30只虫子。”大青蛙说:“我每天比你多吃32只虫子。”问:两只大青蛙和一只小青蛙7天吃多少只虫子?因学生审题不清导致的解题错误大概有以下几类。①没仔细分析大青蛙吃多少只虫子,直接列式为:(30+32+32)×7。②没看清提问,直接列式:(30+30+32)×7。③两种错误皆有,列式为:(30+32)×7。这几种是常见的审题不仔细导致的解题错误,这一类错误往往多见于较简单的应用题解题中。
以上就是我为大家整理的初一数学答题解题方法与技巧。
6. 初一数学大题解题方法与技巧
数学的大题是很难的一部分,下面我就大家整理一下初一数学大题 解题方法 与技巧,仅供参考。
代入验证法
代入验证法也是一个比较有效且简单的算法,多用于已知条件求解的案例中,这种题目多为送分题,像在二次函数运算时,题目中给出二次函数经过两点,求解这个解析式,如果不想列方程式进行计算,可以直接数据代入答案中解析式,选出正确答案即可。
常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
理清思路,从问题的思考角度培养学生的解题技巧
高效课堂教学除了概念的讲解之外,主要集中在解题能力的培养上。学生不仅要理解例题,而且要做大量的练习题。在解题训练中,教师首先要引导学生分析题意,明确思路,再动笔解题。培养学生解题思路时,教师可以要求学生严格遵守一定的解题程序去思考,以形成良好的解题习惯。
进行解题思考时,学生首先要仔细地读题,弄清楚题目考察什么,明确各个数据之间的关系,然后解题。有必要时可以把相关的数据关系先列出来,以提高解题的效率,也提高解题的准确度。例如,学习求“几分之几”的方法时,教师先不必急着答题,而是引导学生进行思考,谁是谁的几分之几。经过思考,学生知道了用乘法计算,解题就容易了。从读题、思考、发现规律到最后解题,学生的思路都非带清晰,形成了良好的解题思考习惯,学习过程就易提高效率和质量。
以上就是我为大家整理的初一数学大题解题方法与技巧。