导航:首页 > 解决方法 > 基因组检测方法

基因组检测方法

发布时间:2024-07-13 10:37:51

1. 易基因|全基因组DNA甲基化测序分析全流程

全基因组DNA甲基化实验怎么做?从技术原理、建库测序流程、信息分析流程和研究套路等四方面详细介绍。

表观修饰不需要改变 DNA 序列便能实现对性状的改变,表观修饰的改变与基因功能乃至细胞状态段烂陆、发育、衰老、疾病等存在重要的关联。在众多的表观遗传修饰中,最为重要且研究最为广泛的修饰之一是 DNA 甲基化,而全基因组甲基化测序(WGBS-seq)无疑是最有效的研究手段。

全基因组甲基化测序利用重亚硫酸盐能够将未甲基化的胞嘧啶(C)转化为胸腺嘧啶 (T)的特性,将基因组用重亚硫酸盐处理后测序,即可根据单个 C 位点上未转化为 C 未转化为 T 的 reads 数目与所有覆盖的 reads 数目的比例,计算得到甲基化率。该技术对于全面研究胚胎发育、衰老机制、疾病发生发展的表观遗传机制,以及筛选疾病相关的表观遗传学标记位点具有重要的应用价值。

全基因组甲基化测序原理示意图入下:

样品检测——样品打断 ——文库构建——BS处理——文库质检

(一)样品检测

对DNA样品的检测主要包括2种方法:

(1)琼脂糖凝胶电泳分析DNA降解程度以及是否有污染,检测具有明显的主带,且条带清晰;

Qubit 2.0对DNA浓度进行精确定量,DNA检测总量不低于1ug。

(二)文库构建

样本检测合格后,使用Bioruptor系统将1µg样品基因组DNA与未甲基化的lambda DNA混合,然后将其片段化,平均大小约为250bp。片段化后,纯化的随机片段化DNA随后用T4 DNA聚合酶,Klenow片段和T4多核苷酸激酶的混合物进行修复,钝化和磷酸化末端。随后使用Klenow片段(3'-5'exo-)对钝的DNA片段进行3'腺苷酸化,然后与连接5'-甲基胞嘧啶而不是使用T4 DNA连接酶的胞嘧啶连接的衔接子进行连接。完成每个步骤后,使用磁珠纯化DNA。之后,根据说明使用ZYMO EZ DNA甲基化金试剂盒将未甲基化的胞嘧啶转化为尿嘧啶。最后,用JumpStart Taq DNA聚合酶进行PCR扩增,再使用磁珠对PCR产物进行纯化获得最终文库。

(三)文库质检

文库构建完成后,先使用Qubit2.0进行初步定量,稀释文库至1ng/ul,随后使用Agilent 2100对文库的insert size进行检测,insert size符合预期后,使用qPCR方握顷法对文库的有效浓度进行准确定量(文库有效浓度> 2nM),以保证文库质量。

(四)上机测序

文库检测合格后,把不同文库按照有效浓度及目标下机数据量的需求pooling后在illumina Nova平台测序,测序策略为PE150。

(一)原始下机数据质控

原始下机数据为FASTQ格式,是高通量测序的标准格式。FASTQ文件每四行为一个单位,包含一条测序序列(read)的信息。该单位第一行为read的历逗ID,一般以@符号开头;第二行为测序的序列,也就是reads的序列;第三行一般是一个+号,或者与第一行的信息相同;第四行是碱基质量值,是对第二行序列的碱基的准确性的描述,一个碱基会对应一个碱基质量值,所以这一行和第二行的长度相同。以下为一条read信息的示例:

原始下机数据包含建库时引进的接头序列以及质量过低的碱基,这些因素会导致后续比对到基因组的reads较少,从而导致得到的信息较少,因此需要进行过滤。利用trim_galore软件对原始数据进行去除接头序列及低质量碱基等质控步骤。

(二)序列比对

经过质控的reads需要根据与参考基因组的序列相似度比对到参考基因组上。相比于常规基因组及转录组测序,WGBS测序方法产生的数据的特点决定其在比对时存在三大困难:

(1)DNA片段正链和负链经过重亚硫酸盐转化后将不再反向互补,再经过PCR,便会产生四条不同的序列,这将大大增加比对时的计算量。

(2)经过重亚硫酸盐转化后,DNA序列大部分C碱基被转化成T碱基,因此序列含大量T而缺乏C;经过PCR后,产生的互补链则含有大量A而缺乏G。这样便导致序列的复杂度降低(即序列的组成特征更单一),从而增加比对的难度。

(3)C和T的比对是不对称的。经过重亚硫酸盐转化后,序列中非甲基化的C碱基(占大部分)被转化为T,这将导致测序序列与参考基因组不匹配,T既可能应该比对到T上,有可能应该比对到C上;而C则只能比对到C上。这也增加了比对的难度。

利用BSMAP软件进行比对。BSMAP进行比对时,先以参考基因组上C碱基的位置作为指导,将reads中对应参考基因组C碱基位置的T标记为C,其他T保持不变,从而使reads可以直接比对到参考基因组。

(三)甲基化水平计算

甲基化水平可根据未转化为 T 的 C 与转化为 T 的 C 的 reads 的比例计算得到,即:

Beta-value = C-reads / (C-reads + T-reads) * 100%

其中,Beta-value 即为该胞嘧啶的甲基化水平,C-reads 为覆盖该位点的支持甲基化的reads 数目(测得该位点为 C 的 reads),T-reads 为覆盖该位点的不支持甲基化的 reads 数目(测得该位点为 T 的 reads)。 计算原理示意图如下:

利用BSMAP统计甲基化水平。

(四)差异甲基化区域(DMR)鉴定及统计

DMR检测使用权威期刊发表的metilene软件。该软件先将基因组进行预分段,以排除较长序列中不包含CG位点的片段。随后,利用二元分隔算法,递归缩小检测范围,以搜索得到组间累积平均甲基化差异最大的区域,作为可能的DMR;最后,结合双重统计学检验(MWU-test和2D KS-test),得到准确的DMR。检测原理如下图所示:

本分析检测DMR的标准如下:

(1)区域平均甲基化差异不小于0.1;

(2)CpG位点数不少于5个;

(3)区域长度不小于50 bp;

(4)甲基化水平差异统计检验的校正P值小于0.05;

(5)2D KS-test检验P值小于0.05。

(五)信息分析流程示意图

DNA甲基化组学研究的核心内容在于对DNA甲基化数据的挖掘。DNA甲基化一般遵循三个步骤进行数据挖掘。

首先,进行整体全基因组甲基化变化的分析,包括平均甲基化水平变化、甲基化水平分布变化、降维分析、聚类分析、相关性分析等。

其次,进行甲基化差异水平分析,筛选具体差异基因,包括DMC/DMR/DMG鉴定、DMC/DMR在基因组元件上的分布、DMC/DMR的TF结合分析、时序甲基化数据的分析策略、DMG的功能分析等。

最后,将甲基化组学&转录组学关联分析,包括Meta genes整体关联、DMG-DEG对应关联、网络关联等。

Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells. 两种状态的小鼠胚胎干细胞的甲基化组学研究

1、背景

小鼠胚胎干细胞一般生长在含有血清的基质中,被称作血清干细胞(serum ESCs);加两种激酶抑制因子使胚胎干细胞在无血清的情况下更能保持多能性的基态,这种干细胞称为2i干细胞(2i ESCs);这两种状态的胚胎干细胞可以互相转化。以前这方面的甲基化研究大多基于质谱,覆盖度和研究结果有限,尚缺乏2i胚胎干细胞的甲基化组学研究。

2、方法

利用全基因组重亚硫酸盐甲基化测序(WGBS),对这两种可互相转换的小鼠胚胎干细胞进行甲基化组学研究

3、结论

全面准确的检测了两种小鼠胚胎干细胞的DNA甲基化修饰并进行了系统的比较;同serum ESCs相比,雄性2iESCs全局低甲基化;在血清中,雌性ESCs跟雄性2i ESCs类似呈现全局低甲基化,而在2i ESCs状态下,甲基化水平会进一步降低。

以上就是关于全基因组甲基化测序实验流程和分析思路的介绍。

参考文献:

[1] Ashburner, M. and C. A. Ball, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25 (1): 25-9.

[2] Dirk Schübeler. Function and information content of DNA methylation. Nature, 2015, 517: 321–326.

[3] Frank Jühling et al. metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Research, 2016, 26: 256-262.

[4] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 2000,28(1): 27-30.

[5] Tadafumi Kato Kazuya Iwamoto. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology, 2014, 80: 133-139.

[6] Xiaojing Yang et al. Gene Body Methylation Can Alter Gene Expression and Is a Therapeutic Target in Cancer. Cancer Cell 26, 577–590.

[7] Yuanxin Xi et al. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics, 2009, 10:232.

[8] Gao F, et al. De novo DNA methylation ring monkey pre-implantation embryogenesis. Cell Res. 2017 Apr;27(4):526-539. pii: cr201725.

2. 基因多态性的主要检测方法哪些

1.限制性片段长度多态性(Restriction
Fragment
Length
Polymorphism,RFLP):由DNA
的多态性,致使DNA
分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern
Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。
2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility
shift),多用于鉴定是否存在突变及诊断未知突变。
生物帮上面有这方面的资料,
http://www.bio1000.com/zt/proct/millipore.html

millipore,默克密理博,,millipore公司,反渗透纯水系统,millipore纯水系统

3. 人类的全部基因组是如何测试出来的

我们身体每一个细胞中都有一组长达32亿组碱基对的遗传指令。

要解读这些指令是一项无比艰巨的任务,但对我们了解自身有着深远的意义。

人类基因组计划这种及时分享数据的做法并不常见。科学家们更倾向于在他们可以分析并且发布结果的时候再公布研究数据。

然而,人类基因组计划的这种做法 加速了研究过程,并且促成了研究领域一项 空前的国际合作。自此,在公共和私人领域的 研究得到深入开发,使很多与基因相关的疾病 得以被检测出来,同时测序方法也被不断完善。

如今,一个人的全部基因测序 只需要几天就能完成。

但是,能够解读基因只是第一步而已。要了解大多数基因的功能以及它们是如何被控制的,我们还有很漫长的路要走。

这些工作将要交给我们下一代充满进取心的研究者来完成了。

欢迎关注微信公众号infoVision,更多精彩科普小动画等着你!

4. 基因检测方法

一般有三种基因检测方法:生化检测、染色体分析和DNA分析。

1.生化检测

生化检测是通过化学手段,检测血液、尿液、羊水或羊膜细胞样本,检查相关蛋白质或物质是否存在,确定是否存在基因缺陷。用于诊断某种基因缺陷,这种缺陷是因某种维持身体正常功能的蛋白质不均衡导致的,通常是检测测试蛋白质含量。还可用于诊断苯丙酮尿症等。

2.染色体分析

染色体分析直接检测染色体数目及结构的异常,而不是检查某条染色体上某个基因的突变或异常。通常用来诊断胎儿的异常。

常见的染色体异常是多一条染色体,检测用的细胞来自血液样本,若是胎儿,则通过羊膜穿刺或绒毛膜绒毛取样获得细胞。将之染色,让染色体凸显出来,然后用高倍显微镜观察是否有异常。

3.DNA分析

DNA分析主要用于识刖单个基因异常引发的遗传性疾病,如亨廷顿病等。DNA分析的细胞来自血液或胎儿细胞。

5. 基因检测方法有好几种,哪一种方式比较好

需要按照实际需求去选择,没有哪个最好的说法,合适的就是最好的
常用基因诊断技术:
一、Southern印迹法(Southern blot)

基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。
当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。

二、聚合酶链反应

近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。

三、扩增片段长度多态性

小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析.

四、等位基因的特异寡核苷酸探针诊断法

当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来.

PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。

五、单链构象多态性诊断法

单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。

6. 常用的基因突变检测方法有哪些

1、焦磷酸测序法

测序法的基本原理是双脱氧终止法,是进行基因突变检测的可靠方法,也是使用最多的方法。但其过程繁琐、耗时长,灵敏度不高,对环境和操作者有危害,故在临床应用中存在一定的限制。

焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。

焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力。为大通量、低成本、适时、快速、直观地进行单核苷酸多态性研究和临床检验提供了非常理想的技术操作平台。

2、微数字聚合酶链反应

该方法为将样品作大倍数稀释和细分,直至每个细分试样中所含有的待测分子数不超过1个,再将每个细分试样同时在相同条件下聚合酶链反应后,通过基因芯片逐个计数。该方法为绝对定量的方法。

3、聚合酶链反应-限制性片段长度多态性分析技术

聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。该法一般用于检测已知的突变位点。

因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中兇手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。这也是“微量证据”的威力之所在。

由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。到如今2013年,PCR已发展到第三代技术。1976年,台湾科学家钱嘉韵,发现了稳定的Taq DNA聚合酶,为PCR技术发展也做出了基础性贡献。

PCR是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右)。

DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。

4、高效液相色谱法

该方法是基于发生错配的杂合双链DNA与完全匹配的纯合双链DNA解链特征的差异而进行检测的,可检测出含有单个碱基的置换、插入或缺失的异源双链片段。

与测序法相比,该法简单、快速,不仅可用于已知突变的检测,还可用于未知突变的扫描。但只能检查有无突变,不能检测出突变类型,结果判断容易出错。

5、单链构象异构多态分析技术

依据单链DNA在某一种非变性环境中具有其特定的第二构象,构象不同导致电泳的迁移率不同,从而将正常链与突变链分离出来。与测序法相比,灵敏性更高。

阅读全文

与基因组检测方法相关的资料

热点内容
excel中and函数的使用方法 浏览:267
荣耀20不允许截屏的解决方法 浏览:823
腋下测体温方法夹哪里 浏览:354
盆栽大葱种植时间和方法视频 浏览:926
副作用小的治疗方法 浏览:867
了解松树和椰树是什么传播方法 浏览:170
男的早射能治疗方法 浏览:114
简单又好的的方法 浏览:730
学压腿的正确方法 浏览:395
金花梨施肥的正确方法 浏览:695
有几种锻炼腰椎间盘突出的方法 浏览:638
康熙字典采用哪些注音方法 浏览:352
自测肠癌的方法和技巧 浏览:619
正确擦屁股的方法是 浏览:941
验证是否为纯合子可以用什么方法 浏览:550
如何用简单的方法制作海绵宝宝 浏览:392
用什么方法治打气嗝 浏览:460
股癣有什么好方法断根 浏览:513
rank函数使用方法 浏览:819
诺科壁挂炉使用方法 浏览:393