A. 水中溶氧检测
摘 要:本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、电流测定法(Clark溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优缺点,对荧光淬灭法的应用前景进行了初步探讨。
关键词:溶解氧、荧光淬灭、环境监测
0.引言
随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,我国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。其中,水中溶解氧含量是进行水质监测时的一项重要指标。
溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。
1.水体溶解氧的各种检测方法及原理
1.1 碘量法(GB7489-87)(Iodometric)
碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:
4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)
2Mn(OH)2+O2 = 2H2MnO3↓ (2)
2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)
加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:
4KI+2H2SO4 = 4HI+2K2SO4 (4)
2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)
再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:
2Na2S2O3+I2 = Na2S4O6+4NaI (6)
设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:
DO(mol/L)= (7)
在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。
1.2 电流测定法(Clark溶氧电极)
当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应:
O2+2H2O+4e à 4OH- (8)
在阳极(负极),如银-氯化银电极上发生氧化反应:
4Ag+4Cl- à 4AgCl+4e (9)
(8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。
电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制。目前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也要经常更换。张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L,变异系数为4.81%。同碘量法做对比实验时,每个样品测定值绝对误差小于0.21mg/L,相对误差不超过2.77%,两种方法相对误差在-2.52%~2.77%之间。代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪,该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。测量范围为0~20mg/L,精度为±0.03mg/L。
1.3 荧光猝灭法
荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液所发生的荧光的强度来测定试样溶液中荧光物质的含量。通过利用光纤传感器来实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测。从80年代初起,人们已开始了探索应用于氧探头的荧光指示剂的工作。早期曾采用四烷基氨基乙烯为化学发光剂,但由于其在应用中对氧气的响应在12小时内逐渐衰减而很快被淘汰。芘、芘丁酸、氟蒽等是一类很好的氧指示剂〔8〕,如1984年Wolfbeis等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多孔玻璃。这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性。1989年,Philip等〔9〕将香豆素1、香豆素103、香豆素153三种荧光指示剂分别固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。从灵敏度、发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论。使用这种荧光指示剂的光纤氧传感器的应用范围相当广泛。
后来过渡金属(Ru、Os、Re、Rh和Ir)的有机化合物以其特殊的性能受到关注,对光和热以及强酸强碱或有机溶剂等都非常稳定。一般选用金属钌铬合物作为荧光指示剂即分子探针。金属钌铬合物的荧光强度与氧分压存在一一对应的关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解。钌铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度。目前的研究中,钌化合物的配体一般局限于2,2’-联吡啶、1,10-邻菲洛啉及其衍生物。Brian[10]在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种不同涂料的传感器性能,结果显示在pH=7时Ru(ph2phen)2+3显示了更高的灵敏度。为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平〔11〕等合成Ru(Ⅱ)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂配合物Ru(I)[4,7-双(4’-丙苯基)-1,10-邻菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-双(4’-庚苯基)-1,10-邻菲洛啉]3(ClO4)2。Kerry[12]等合成Ru(Ⅱ)[5-丙烯酰胺基-1,10-邻菲洛啉]3(ClO4)2。实验均发现随着配体碳链的增长,荧光试剂的憎水性增大,流失现象减少,可延长膜的使用寿命。Ignacy[13]等研究还发现极化后的[Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度。吸附在硅胶60上的钌(Ⅱ)络合物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧淬灭。
其检测原理是根据Stern-Vlomer的猝灭方程[14]:F0/F=1+Ksv[Q],其中F0为无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]。
实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时在线监测。其测量范围一般为0~20mg/L,精度一般≤1%,响应时间≤60s。
1.4 其他检测方法
电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成能导电的铊离子。通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓度。实验表明,每增加0.035S/cm的电导率相当于1mg/L的溶解氧(DO)。此方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测。
阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:
4Tl+O2+2H2Oà4Tl++4OH- (10)
然后用溶出法测定Tl+离子的浓度,从而间接求得溶解氧(DO)的浓度。使用该方法取样量少,灵敏度高,而且受温度影响不大。
2.国内外在水体溶解氧检测领域研究的现状
我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作环节复杂,导致检测时间长,不能及时得到水质情况。国内目前一些单位和研究机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷磁仪器厂生产的JPSJ-605型溶解氧分析仪,北京北斗星工业化学研究所研制的H-BD5W手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差距;国内对荧光溶解氧传感器也有一些研究[5][15],技术已经达到国外平均水平,但研究实现商品化的较少。国外一般采用新型的基于荧光淬灭效应的溶解氧测量仪[16],代表产品有瑞士DMP公司的MICROXI型的溶解氧测量仪,美国OXYMON氧气测量系统等等,测量精确,快速,并可以远程测量等。总的来说,目前市场上大多数商品化溶解氧测量仪都是基于Clark溶氧电极的,基于荧光淬灭法的光纤溶解氧传感器较少。
我国环境监测、监控技术在环境领域的应用等方面的研究与发达国家相比还存在显着差距。目前国内在水质监测系统上还没有自己开发的完整的设备,大多数采用国外的设备和技术,如ECOTECH公司的WQMS(水质监测系统),美国SIGMA900系列水质采样器等等,但是国外的水质检测设备和系统大多数价格高,体积大,有的不完全符合中国的环境条件。据海关统计,2000年我国进口各类仪器仪表总额70亿美元,接近我国仪器仪表工业总产值的50%。全国每年用于仪器仪表进口的费用大大超过用于购买国产仪器的费用,价格昂贵、采购周期长以及各种配件难以获得等原因,严重地约束了我国科学技术的发展[1]。因此我国急需研究开发自行生产的环境水质自动监测仪器。
3.小结
目前国际上发展的主流是基于荧光淬灭原理的光纤溶解氧传感器,仪器的性能一般为:重复性误差±0.3㎎/L,零点漂移和量程漂移±0.3㎎/L,响应时间(T90)≤2min,温度补偿精度±0.3㎎/L,MTBF≥720h/次。根据上述荧光淬灭的特性,拟使用如下方法实现溶解氧检测仪:光源发出的光信号经滤光片送到有荧光指示剂的区域,水中溶解氧与荧光指示剂相作用,引起光的强度、波长、频率、相位、偏振态等光学特征发生变化后送到光探测器和信号处理装置,得到溶解氧浓度的信息。为了防止污染物、水体生物的腐蚀、干扰,仪器的抗干扰能力是关键。应该从传感膜的化学稳定性,仪器的防腐蚀性能,电路的工作稳定性方面多加以研究。
鉴于基于荧光淬灭法测量仪的光纤传感器具有较高的测量精度和较强的抗干扰能力,以及较好的重复性和稳定性,可以用于农业中水产养殖业水质的测量以及各种农业用水污染程度的测量,因此对此种传感器的研究具有重要的实际应用价值和商品化价值。
B. 水中溶解氧的测定一般用什么方法
一般有三种方法:碘量法,叠氮化钠修正法,膜电极法。
C. BOD分析仪的测定原理/方法
水五日生化需氧量(BOD5)的测定 1.1 理解BOD的含义及测定条件;
1.2 了解水样预处理的道理与预处理方法。 生物化学需氧量(BOD)定义为:在规定的条件下,微生物分解存在水中的某些可氧化物质,特别是有机物所进行的生物化学过程所消耗的溶解氧量。该过程进行的时间很长,如在20℃培养条件下,全过程需100天,根据目前国际统一规定,在20±1℃的温度下,培养五天后测出的结果,称为五日生化需氧量,记为BOD5,其单位用质量浓度mg/L表示。
对于一般生活污水和工业废水,虽然含较多有机物,如果样品含有足够的微生物和具有足够氧气,就可以将样品直接进行测定,但为了保证微生物生长的需要,需加入一定量的无机营养盐(磷酸盐、钙、镁和铁盐)。
某些不含或少含微生物的工业废水、酸碱度高的废水、高温或氯化杀菌处理的废水等,测定前应接入可以分解水中有机物的微生物,这种方法称为接种。对于一些废水中存在着难被一般生活污水中微生物以正常速度降解的有机物或含有剧毒物质时,可以将水样适当稀释,并用驯化后含有适应性微生物的接种水进行接种。
一般检测水质的BOD5只包括含碳有机物质氧化的耗氧量和少量无机还原性物质的耗氧量。由于许多
二级生化处理的出水和受污染时间较长的水体中,往往含有大量硝化微生物。这些微生物达到一定数量就可以产生硝化作用的生化过程。为了抑制硝化作用的耗氧量,应加入适量的硝化抑制剂。 BOD分析仪是高智能化在线连续监测仪。使用的玻璃仪器皿在实验前应认真清洗,防止油污、沾尘。玻璃器皿干燥后方能使用。
BDO-200A型中文在线溶氧仪是我公司生产高智能化在线连续监测仪。可以配极谱式电极,自动实现从ppb级到ppm级的宽范围测量,是检测锅炉给水、凝结水、环保污水等行业的液体中氧含量测量的专用仪器。其具有响应快、稳定、可靠、使用费用低等特点,适合火力发电厂大量使用。
常用实验室设备如下:
4.1 生化培养箱温度控制在20±l℃,可连续无故障运行。
4.2 充氧设备充氧动力常采用无油空气压缩机(或隔膜泵、或氧气瓶、或真空泵)。充氧流程可分为正压、负压充氧两种流程。
4.3 BOD培养瓶:容积550±1mL。
4.4 样品运输贮藏箱:温度保持0~4℃。
4.5 250mL溶解氧瓶或具塞试剂瓶2~6个。
4.6 50mL滴定管2支。
4.7 1mL移液管3支,25mL、100mL移液管各1支。
4.8 10mL、100mL量筒各1个。
4.9 250mL碘量瓶2个。 采用分析纯试剂。实验用水采用重蒸蒸馏水。
5.1硫酸锰溶液
将MnSO4·4H2O 480g或MnSO4·2H2O 400g溶于蒸馏水中,过滤后稀释成100mL。 (此溶液中不能含有高价锰,试验方法是取少量此溶液加入碘化钾及稀硫酸后溶液不能变成黄色,如变成黄色表示有少量碘析出,即表示溶液中含有高价锰)。
MnO+2I-+6H+=I2+Mn2++3H2O 23
5.2碱性碘化钾溶液
溶解500g氢氧化钠于300—400mL蒸馏水中,冷至室温。另外溶解300g碘化钾于200mL蒸馏水中,慢慢加入已冷却的氢氧化钠溶液,摇匀后用蒸馏水稀释至1000mL(强碱性溶液腐蚀性很大,使用时注意勿溅在皮肤或衣服上),如有沉淀,则放置过夜取上清液,贮藏于塑料瓶或棕色试剂瓶中(用棕色试剂瓶时要用橡胶瓶塞)。
5.3 浓硫酸
比重1.84,强酸腐蚀性很大,使用注意勿溅在皮肤或衣服上。
5.4 1%淀粉指示液
称取2g可溶性淀粉,溶于少量蒸馏水中,用玻璃棒调成糊状:慢慢加入(边加边搅拌)刚煮沸的200mL蒸馏水中,冷却后加入0.25g水杨酸或0.8g氯化锌ZnCl2防腐剂。此溶液遇碘应变为蓝色,如变成紫色表示已有部分变质,要重新配制。
5.5 (1+1)硫酸溶液
将浓硫酸(比重1.84)与水等体积混合。
5.6 2 mol/L(1/2 H2SO4)
5.7盐溶液
下述溶液至少可稳定一个月,应贮存在玻璃瓶内,置于暗处。一旦发现有生物滋长迹象,则应弃去不用。
5.7.1 磷酸盐:缓冲溶液。
将8.5g磷酸二氢钾(KH2PO4)、21.75g磷酸氢二钾(K2HPO4)、33.4g七水磷酸氢二钠(NaH2PO4·7H2O)、和1.7g氯化铵(NH4Cl)溶于500mL水中,西是指1000mL。
此缓冲溶液的pH应为7.2。
5.7.2 七水硫酸镁:22.5g/L溶液
将22.5g七水硫酸镁(MgSO4·7H2O)溶于水中,稀释至1000mL并混合均匀。
5.7.3 氯化钙:27.5g/L溶液
将27.5g无水氯化钙(CaCl2)(若用水合氯化钙,要取相当的量)溶于水,稀释至1000mL并混合均匀。
5.7.4:0.25g /L溶液
将0.25g六水氯化铁(Ⅲ)(FeCl3·H2O)溶解于水中,稀释至1000mL并混合均匀。
5.8 硫代硫酸钠溶液C(Na2S2O3)=0.025mol/L
称取6.2g硫代硫酸钠(Na2S2O3·5H2O)溶于煮沸放冷的蒸馏水中,加入0.2g碳酸钠,用水稀释至1000mL。贮于棕色瓶中,使用前用重铬酸钾,C(1/6K2Cr2O7)=0.0250mol/L标准溶液标定,标定方法如下。
于250mL碘重瓶中,加入l00mL蒸馏水和1g碘化钾,加入10.00mL 0.0250 mo1/L重铬酸钾标准溶液,5mL 2 mol/L(1/2 H2SO4)硫酸溶液(5.6),密塞,摇匀,于暗处静置5 min后,用待标定的硫代硫酸钠溶液滴定至溶液呈淡黄色,加入1 mL淀粉溶液,继续滴定至蓝色刚好褪尽为止,记录用量。
标定反应:K2Cr2O7+6KI+7H2SO4=Cr2(SO4)3+312+4K2SO4+7H2O
(硫酸铬,绿色)
I2+2Na2S2O3=2NaI+Na2S4O6
(连四硫酸钠,无色)
C=10.00×0.0250/V
式中 C——硫酸钠溶液浓度(mol/L)
V——硫代硫酸钠溶液消耗量(mL)
5.9 氢氧化钠,0.5mol/L
5.10 盐酸,0.5mol/L
5.11 稀释水
在5-20L玻璃内瓶装入一定量的纯水曝气2-8h,使稀释水的溶解氧接近饱和;曝气后瓶口盖上两层干净纱布,置于20℃培养箱中放置数小时,使水中溶解氧含量不少于8mg/L。临用前每升水中加入四种营养盐溶液(5.7.1)、(5.7.2)、(5.7.3)、(5.7.4)各lmL并混合均匀。稀释水的pH值为7.2,应在8h内使用完。
5.12 接种水
如被检验样品本身不含有足够的适应性微生物,应采取下述方法获得接种水。接种温度应在20±l℃。
5.12.1 城市污水,一般采用住宅区生活污水,过滤后在20℃培养箱内放置一昼夜,取上清液作为接种水。
5.12.2 待测样品经生化处理构筑物的出水处的出水。
5.12.3 当工业废水中含有难降解有机物时,取该工业废水排放口下游3-8Km 处的水作为做接种水;如无此种水源采用驯化菌种的方法在实验室培养含有适应于待测样品的接种水,建议采用如下方法:取中和或适当稀释后的该水样进行连续曝气,每天加少量新鲜水样。同时加入适量表层土壤、花园土壤或生活污水,使能适应水样的微生物大量繁殖。当水中出现大量絮状物,或分析其化学需氧量的降低值出现突变时,表明适应的微生物已经繁殖,可用做接种水。一般驯化过程需要3-8d。
5.13 接种的稀释水
根据需要和接种水的来源,向每升稀释水(5.11)中加入1.0~5.0mL接种水(5.12)中的一种。
以接种的稀释水的5天(20℃)耗氧量应在0.3~1.0mg/L之间。 6.1 实验前准备工作
6.1.1实验前8h将生化培养箱接通电源,并使温度控制在20℃下正常运行。
6.1.2将实验用的稀释水、接种水和接种的稀释水放入培养箱内恒温备选用。
6.2水样预处理
6.2.1水样的pH值不在6.5~7.5之间时;先做单独试验,确定需要的盐酸(5.10)或氢氧化钠溶液(5.9)
体积,再中和样品,不管有无沉淀形成。当水样的酸度或碱度很高,可改用高浓的碱或酸进行中和,确保用量不少过水样体积的0.5%。
6.2.2含有少量游离氯的水样,一般放置1-2h后,游离氯即可消失。对于游离氯在短时间内不能消失的水样,可加入适量的亚硫酸钠溶液,以除去游离氯。
6.2.3从水温较低的水体中或富营养化的湖泊中采集的水样,应迅速升温至20℃左右,以赶出水样中过饱和的溶解氧。否则会造成分析结果偏低。
从水温较高的水体中或废水排放口取样,应迅速使其冷却至20℃左右,否则会造成分析结果偏高。
6.2.4若待测水样没有微生物或微生物活性不足时,都要对样品进行接种。诸如以下几种工业废水:
a、未经生化处理过的工业废水;
b、高温高压或经卫生杀菌的废水,特别要注意食品加工工业的废水和医院生活污水;
c、强酸强碱性的工业废水;
d、高BOD5值的工业废水;
e、含铜、锌、铅、砷、镉、铬、氰等有毒物质的工业废水。
以上的工业废水都需采用具有足够微生物。 7.1 不经稀释水样的测定
①溶解氧含量较高、有机物含量较少的地表水,可不经稀释而直接以虹吸法将约20℃的混匀水样转移入两个溶解氧瓶内,转移过程应注意不使产生气泡。以同样的操作使两个溶解氧瓶充满水样后溢出少许,加塞。瓶内不应留有气泡。
②其中一瓶随即测定溶解氧,另一瓶的瓶口进行水封后,放入培养箱中,在20培养5天。在培养过程中注意添加封口水。
③从开始放入培养箱算起,经过5昼夜后,弃去封口水,测定剩余的溶解氧。
7.2 需经稀释水样的测定
7.2.1 稀释倍数的确定
根据实践经验,提出下述计算方法,供稀释时参考。
7.2.1.1地表水
由测得的高锰酸盐指数与一定的系数的乘积,即求的稀释倍数。高锰酸盐指数与系数的关系见表2-3。
表2-3 由高锰酸盐指数与系数的关系
高锰酸盐指数(mg/L) 高锰酸盐指数(mg/L)
系数
<5
—
10~20
0.4、0.6
5~10
0.2、0.3
>20
0.5、0.7、1.0
7.2.1.2工业废水
由重铬酸钾法测得的COD值来确定,同程需作单个稀释比。
使用稀释水时,由COD值分别乘以系数0.075、0.15、0.225,即获得三个稀释倍数。
使用接种稀释水时,则分别乘以系数0.075、0.15、0.25即获得三个稀释倍数。
7.2.2 稀释操作
7.2.2.1 一般稀释法:
按照选定的稀释比例,用虹吸法沿筒壁先引入部分稀释水(或接种稀释水)于1000mL量筒中,加入需要量的均匀水样,再加入稀释水(或接种稀释水)至800mL,用带胶板的玻棒小心上下搅匀。搅拌时勿使搅棒的胶板露出水面,防止产生气泡。
按照(7.1)相同的步骤操作,测定培养5天前后的溶解氧。
另取两个溶解氧瓶,用虹吸法装满稀释水(或接种稀释水)作为空白试验,测定培养5天前后的溶解氧。
7.2.2.2 直接稀释法
直接稀释法是在溶解氧瓶内直接稀释。在已知两个容积相同(其差<1mL)的溶解氧瓶内,用虹吸法加入部分稀释水(或接种稀释水),再加入根据瓶容积和稀释比例计算出来的水样量,然后用稀释水(或接种稀释水)使刚好充满,加塞,勿留气泡于瓶内。
7.3溶解氧的测定:
溶解氧的测定方法用碘量法(通常用叠氮化钠改良法),详见本书第二章《实验六水溶解氧(DO)的测定》 8.1不经稀释直接培养的水样
BODs = DO1-DO2
BODs——水样的BOD5值,mg/L
DO1:水样在培养前的溶解氧浓度,mg/L
DO2:水样在培养五天后的溶解氧浓度,mg/L
8.2 经稀释后培养的水样2121215)()(ffBBCCBOD
C1——水样在培养前的溶解氧浓度,mg/L
C2——水样在培养五天后的溶解氧浓度,mg/L
B1——稀释水(或接种稀释水)在培养前的溶解氧浓度,mg/L
B2——稀释水(或接种稀释水)在培养五天后的溶解氧浓度,mg/L
f1——稀释水(或接种稀释水)在培养液中所占比例
f2——水样在培养液中所占比例1 9.1 根据废水浓度高低及毒性大小确定使用稀释水、接种水还是稀释接种水,若稀释比大于100,将分两步或几步进行稀释。
9.2 培养时要注意避光,防止藻类生长影响测定结果。
9.3 其他注意事项参见本书第二章《实验六水溶解氧(DO)的测定》中(7.2~7.6)。
D. 水质化验的水质检测方法
水质 化学需氧量(COD)的测定
1 主题内容与适用范围
本方法适用于水样中化学需氧量(COD)的测定,测定范围为0~1500mg/L。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 COD消化器。
3 试剂
3.1 COD消化液。
4 分析步骤
4.1 样品制备
吸取2mL混匀水样于COD消化液试剂瓶中,混合均匀。然后将试剂瓶置于COD消化器中,150℃恒温加热2小时。取出冷却至室温比色。同时用蒸馏水代替试样进行空白试验。
4.2 比色
4.2.1 按POWER 键打开仪器,仪器预热结束后输入数字键435,按READ/ENTER 键确认;
4.2.2 转动波长旋钮将波长调至620nm,按READ/ENTER 键确认;
4.2.3 将空白试样瓶放入检测槽中,按ZERO 键,调零;
4.2.4 将试样瓶放入检测槽中,按READ/ENTER 键,读取读数。结果以mg/L计。
备注:对于COD较大的水样(如精炼厂、榨油厂污水和中和水)需将水样稀释后再进行检测。
水检测方法
水质 PH值的测定
1 主题内容与适用范围
本方法适用于水样中PH值的测定。
2 原理
PH值由测量电池的电动势而得。在25℃时,溶液每变化1个PH单位,电位差改变59.16mV,据此在酸度计上直接以PH的读数表示。
3 仪器及用具
3.1 PH计;
3.2 电极。
4 试剂
4.1 标准PH缓冲溶液:PH 4.003、PH 6.864、PH 9.182;
4.2 蒸馏水。
5 分析步骤
5.1 按仪器使用说明书启动仪器,并预热半小时;
5.2 用标准PH缓冲溶液校准电极;
5.3 用蒸馏水水冲洗电极,然后将电极放入样品中,按动测量钮,待数据稳定后读取PH值。
水检测方法
水质 电导率的测定
1 主题内容与适用范围
本方法适用于水样中电导率的测定,测定范围0~10000us/cm。
2 原理
电导度(S)是用来表示水中离解成分的导电性能,它是水溶液电阻的倒数。它与水中总离解成份的总浓度、离子价数、各种离子的相对浓度、迁移度、温度等条件有关。
电导率(K)为距离1cm,截面积1cm2的二电极之间介质的电阻倒数。
3 仪器及用具
3.1 便携式电导仪:EP-10型。
4 分析步骤
用蒸馏水冲洗电导仪检测杯三次,将冷却至室温的样品倒入检测杯内,调节旋钮选择设定参数比例,按住检测按钮,读出数据。
水检测方法
水质 含油量的测定
1 主题内容与适用范围
本方法适用于水样中含油量的测定。
2 仪器及用具
2.1 恒温水浴锅;
2.2 空气烘箱;
2.3 电子天平;
2.4 分液漏斗:500mL;
2.5 平底烧瓶: 带标准磨口的250mL平底烧瓶;
2.6 冷凝回收装置:与平底烧瓶磨口配套。
3 试剂
3.1 石油醚: 分析纯。
3.2 氯化钠: 分析纯。
3.3 无水硫酸钠:分析纯。
4 分析步骤
4.1 量取混匀水样100mL于三角烧瓶中,加入2g氯化钠,轻轻摇晃使氯化钠溶解;
4.2 加入25ml石油醚充分振摇,将混合液倒入分液漏斗中,静置分层收集上层液;
4.3 用25mL石油醚分别洗涤混合液两到三次;
4.4 收集所有上层液于碘量瓶中,加入无水硫酸钠脱水,加盖静置半小时,过滤到烘至恒重的平底烧瓶中;
4.5 将平底烧瓶置于水浴锅中,连接上冷凝回收装置,回收溶剂;
4.6 再将平底烧瓶置于105℃烘箱中烘干1小时,取出冷却称重;
4.7 再复烘半小时,直到前后重量差值小于0.002g为止。
5 计算
W2-W1
含油量(mg/L) = --------------- ×1000000
V
式中:W2 ---- 平底烧瓶与油的重量,g;
W1 ---- 平底烧瓶的重量,g;
V ------ 水样体积,mL。
水检测方法
水质 碱度的测定
1 主题内容与适用范围
本方法适用于水样中碱度的测定。
2 原理
用酚酞做指示剂,用标准酸溶液滴定水样,达到终点,所测得的碱度称为酚酞碱度,此时水样中所含全部氢氧根和二分之一碳酸根与酸化合。在滴定酚酞碱度的水样中加入甲基橙指示剂,继续用标准酸溶液滴定达到终点时(包括酚酞碱度的用量),所测得的碱度称为甲基橙碱度,也称总碱度,此时水样中所含碳酸氢根全部被中和。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL。
4 试剂
4.1 盐酸标准溶液: 0.1mol/L。
4.2 酚酞指示剂: 10g/L的95%乙醇溶液。
4.3 甲基橙指示剂:1g/L的水溶液。
5 分析步骤
5.1 酚酞碱度的测定(P-碱)
量取100mL水样于三角烧瓶中,加三滴酚酞指示剂,若不显色,说明酚酞碱度为零,若显红色,用盐酸标准溶液滴定至红色刚好褪去为终点,记录盐酸标准溶液用量(V1)。
5.2 总碱度的测定(T-碱)
在测定酚酞碱度后的水样中,再加入1滴甲基橙指示剂,继续用盐酸标准溶液滴定至刚好出现橙红色为终点。记录下盐酸标准溶液的用量(包括酚酞碱度用量)V2。
6 计算
c×V2
酚酞碱度(meq/L) = ---------------
100
c×V3
总碱度(meq/L) = ---------------
100
式中:c ---- 盐酸标准溶液浓度,mol/L;
V2 --- 用酚酞指示剂时,滴定消耗盐酸标准溶液体积,mL;
V3 ----- 用甲基橙指示剂后,滴定消耗盐酸标准溶液体积,mL。
注:设水中的碱度全部由氢氧化物、碳酸盐、重碳酸盐形成,并认为不存在其它弱无机酸和有机酸,并假定氢氧化物与重碳酸根不共存的条件下,水中氢氧化物、碳酸根、碳酸氢根的关系如下表 滴定结果 氢氧化物碱度以(CaCO3)计 碳酸盐碱度以(CaCO3)计 碳酸氢根碱度以(CaCO3)计 P=0 0 0 T 2P<T 0 2P T-2P 2P=T 0 2P 0 2P>T 2P-T 2(T-P) 0 P=T T 0 0 毫克当量/升(meq/L)值100.08×÷2即为以碳酸钙计的毫克/升(mg/L)值。
水检测方法
水质 氯离子的测定
1 主题内容与适用范围
本方法适用于水样中氯离子的测定,其范围小于100mg/L。
2 原理
在中性介质中。硝酸银与氯化物反应生成氯化银白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL;
4 试剂
4.1 硝酸银标准溶液: 0.1mol/L。
4.2 铬酸钾指示剂: 100g/L的水溶液。
5 分析步骤
量取100mL水样于三角烧瓶中,加三滴铬酸钾指示剂,用硝酸银标准溶液滴定至砖红色为止,同时以蒸馏水做空白试验。
6 计算
c×(V1-V0)×35.45
氯离子含量(mg/L) = ------------------------- × 1000
100
式中:c ---- 硝酸银标准溶液浓度,mol/L;
V1 --- 试样滴定消耗硝酸银标准溶液体积,mL;
V0 ----- 空白滴定消耗硝酸银标准溶液体积,mL;
35.45----- 氯离子的摩尔质量,克/摩尔。
注:0.1mol/L硝酸银标准溶液的标定
称取于500~600℃灼烧至恒重的基准试剂氯化钠0.15~0.17g于三角烧瓶中,加入60mL蒸馏水,铬酸钾指示剂2滴,用0.1mol/L硝酸银标准溶液滴定由黄色变为黄红色不消失即为终点。
m×1000
C(AgNO3)= ------------------------
V×58.442
式中:m ---- 氯化钠的重量,g;
V --- 硝酸银溶液的体积,mL;
58.442 ----- 氯化钠的摩尔质量,g/mol。
水检测方法
水质 溶解氧的测定
1 主题内容与适用范围
本方法适用于水中溶解氧的测定。
2 仪器及用具
2.1 便携式溶解氧测定仪:JPB-607型;
2.2 溶解氧电极:DO-952型。
3 试剂
3.1 5%亚硫酸钠溶液: 称取5克亚硫酸钠溶于100毫升蒸馏水中。
4 分析步骤
4.1将仪器的测量/调零电源开关拨至“测量”档,溶氧/温度测量选择开关拨至溶氧档,盐度调节旋钮向左旋至底(0g·L-1);
4.2仪器预热5分钟,然后将电极放入5%新鲜配制的亚硫酸钠溶液中5分钟,等读数稳定后,调节调零旋钮,使仪器显示为零。由于电极的残余电流极小,如果没有亚硫酸钠溶液,只要将电极放在空气中,然后将测量/调零电源开关置于调零,调节调零档,调节调零旋钮,使仪器显示为零;
4.3 将电极从溶液中取出,用蒸馏水水冲洗干净,用滤纸小心吸干薄膜表面水分,放入空气中等读数稳定后,调节校准旋钮,使读数指示值为纯水在此温度下饱和溶解氧值。各种温度下饱和溶解氧值见附表;
4.4 校准之后,将电极浸入被测液中,此时仪器的读数即为被测水样的溶解氧值。
备注:1.下表中的栏2是氧溶解氧度(Cs)。以每升水含若干毫克氧表示:在101.3kPa压力下。纯水中含有带饱和水蒸汽的空气时,含氧量为20.94%(v/v)。
2.氧在水中的溶解度随含盐度的增加而降,其关系是线性关系,实际上水的含盐量可高达35g/L,含盐量以每升水中含多少克盐表示之。下表中所列的△C3,是进行校准时每升每克盐浓度要减去的数值。因此,氧在含有mg/L盐水中溶液解度,要用对应的纯水的氧溶解度减去n△C3的数值可求得。
氧在不同温度和氯化物浓度的水中饱和含量表(气压101.3kPa) 温度(℃) C3(mg/L) △C3(mg/L) 温度(℃) C3(mg/L) △C3(mg/L) 0 14.64 0.0925 20 9.08 0.0481 1 14.22 0.0890 21 8.90 0.0467 2 13.82 0.0857 22 8.73 0.0453 3 13.44 0.0827 23 8.57 0.0440 4 13.09 0.0798 24 8.41 0.0427 5 12.74 0.0771 25 8.25 0.0415 6 12.42 0.0745 26 8.11 0.0404 7 12.11 0.0720 27 7.96 0.0393 8 11.81 0.0697 28 7.82 0.0382 9 11.53 0.0675 29 7.69 0.0372 10 11.26 0.0653 30 7.56 0.0302 11 11.01 0.0633 31 7.43 12 10.77 0.0614 32 7.30 13 10.53 0.0595 33 7.18 14 10.30 0.0577 34 7.07 15 10.08 0.0559 35 6.95 16 9.86 0.0543 36 6.84 17 9.66 0.0527 37 6.73 18 9.46 0.0511 38 6.63 19 9.27 0.0496 39 6.53 水检测方法
水质铁离子的测定
1 主题内容与适用范围
本方法适用于水中铁离子的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 试剂
3.1 乙酸铵缓冲溶液:250g乙酸铵溶于150mL蒸馏水中,再加入700mL冰乙酸。
3.2 邻菲咯啉溶液:1g邻菲咯啉溶于蒸馏水中,加20滴浓盐酸,用蒸馏水定容至1000mL。
3.3 溶液A:乙酸铵缓冲溶液:邻菲咯啉溶液=1:2的体积比混合。
4 分析步骤
4.1 样品制备
量取50mL混匀水样于100mL容量瓶中,加入30mL溶液A,用蒸馏水定容至100mL混合均匀。同时用蒸馏水代替水样进行空白试验。5~10分钟内比色。
4.2 比色
4.2.1 按POWER 键打开仪器,仪器预热结束后输入数字键255,按READ/ENTER 键确认;
4.2.2 转动波长旋钮将波长调至510nm,按READ/ENTER 键确认;
4.2.3 倒25mL空白试样于样品瓶中,放入检测槽中,按ZERO键,调零;
4.2.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数。读数×2为试样Fe2+含量,结果以mg/L计。
水检测方法
水质 悬浮物的测定
1 主题内容与适用范围
本方法适用于水中悬浮物的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 分析步骤
3.1 按POWER 键打开仪器,仪器预热结束后输入数字键630,按READ/ENTER 键确认;
3.2 转动旋钮将波长调至810nm,按READ/ENTER 键确认;
3.3 倒25mL蒸馏水于样品瓶中,放入检测槽中,按ZERO键调零;
3.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数,结果以mg/L计。
水检测方法
水质余氯的测定
1 主题内容与适用范围
本方法适用于自来水中余氯的测定。
2 原理
水样中的余氯与邻联甲苯胺反应显黄色,与标准玻片进行比色测定。
3 仪器及用具
3.1 立式比色器:SLS-3型;
3.2 比色管:50mL。
4 试剂
4.1 邻联甲苯胺溶液:将150mL浓盐酸用蒸馏水稀释至500mL,精确称取1.35g邻联甲苯胺盐酸盐溶于500mL蒸馏水中,在不停搅拌下,将此溶液溶于500mL稀盐酸中,贮于棕色瓶内,放置暗处。
5 分析步骤
在50毫升比色管中加入被测水样至刻度,然后加入邻联甲苯胺溶液2.5毫升混合均匀。静置10分钟进行比色,如水温低于15~20℃时,则将水样浸入温水中加热至15~20℃以上再进行比色。空白水样取样后不加试剂。
水检测方法
水质 浊度的测定
1 主题内容与适用范围
本方法适用于水样浊度的测定。
2 仪器及用具
2.1 分光光度计:HACH DR2000;
2.2 专用样品瓶:25mL。
3 分析步骤
3.1 按POWER 键打开仪器,仪器预热结束后输入数字键750,按READ/ENTER 键确认;
3.2 转动旋钮将波长调至450nm,按READ/ENTER 键确认;
3.3 倒25mL蒸馏水于样品瓶中,放入检测槽中,按ZERO键调零;
3.4 将混合均匀的试样倒入样品瓶中,放入检测槽中,按READ/ENTER 键,读取读数,结果以FTU计。
水检测方法
水质总磷的测定
钼酸铵分光光度法
1 主题内容与适用范围
本标准规定了用过硫酸钾为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。
总磷包括溶解的、颗粒的、有机的和无机磷。
本标准适用于地面水、污水和工业废水。
2 原理
在中性条件下用过硫酸钾使试样消解,将所含磷全部转化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。
3 仪器及用具
3.1 具塞(磨口)比色管:50mL
3.2 加热板
3.3 刻度吸管: 5mL,2mL,1mL
3.4 紫外分光光度计
3.5 烧杯:1000mL
4 试剂
本标准所列试剂除磷酸二氢钾为工作基准试剂外,其余均为分析纯,水为蒸馏水。
4.1 过硫酸钾溶液: 50g/L。 将25g过硫酸钾溶于水并稀释至500mL。
4.2 钼酸铵溶液: 26g/L。称取13g钼酸铵,精确至0.1g。称取0.35g酒石酸锑钾,精确至0.01g。溶于在200mL水中,加入300mL硫酸溶液,混匀,冷却后用水稀释至500mL,混匀,存于棕色试剂瓶中(冷藏可保存两个月)。
4.3 抗坏血酸溶液:100g/L。称取50g抗坏血酸,精确至0.1g。溶于蒸馏水中,用水稀释至500mL,贮于棕色试剂瓶中(冷藏可稳定几周,如不变色可长时间使用)。
4.4 磷标准贮备溶液:1mg/mL。溶解磷酸二氢钾(使用前在105℃下干燥2h)1.0967g于蒸馏水中,移入250mL容量瓶中,稀释至刻度,摇匀。
4.5 磷标准工作溶液:10ug/mL。吸取5mL磷标准储备溶液于500mL容量瓶中,以蒸馏水稀释至刻度,摇匀。
5 分析步骤
5.1 空白试样
按(5.2)的规定进行空白试验,用水代替试样,并加入与测定时同体积的试剂。
5.2 测定
5.2.1 消解
吸取5mL混匀水样于50mL具塞比色管中,加入 5mL过硫酸钾溶液(4.1),用蒸馏水稀释至25mL,将比色管置于沸水浴中加热30分钟,取出冷却至室温。
5.2.2 发色
分别向各份消解液中加入1mL抗坏血酸溶液(4.3),2mL钼酸铵溶液(4.2),用蒸馏水稀释至50mL,充分混合均匀。
5.2.3 分光光度测量
室温下放置30分钟后,使用光程为10mm比色皿,在700nm波长下,以蒸馏水为参比液,空白试液调节零点,测定吸光度后,从工作曲线(5.2.4)上查得磷的含量。
5.2.4 工作曲线的绘制
取6支具塞比色管分别加入0.0;0.50;1.0;2.0;3.0;4.0mL磷标准溶液(4.5)。然后按步骤(5.2)进行处理,以蒸馏水为参比液,空白试液调节零点,测定吸光度后,和对应的磷的含量绘制工作曲线。
6 计算
总磷含量以C(mg/L)表示,按下式计算:
m×X
C = --------
V
式中:m ---- 试样测得含磷量,ug;
X --- 样品稀释倍数;
V ---- 测定用试样体积,mL。
注:1、对于总磷较大的水样(如精炼厂、榨油厂污水和中和水)需将水样稀释50倍后再进行检测;排放水采样量为10mL。
2、若消解后的试样有悬浮物需过滤后再发色。
水检测方法
水质总硬度的测定
1 主题内容与适用范围
本方法适用于水样中总硬度的测定。
2 原理
在PH=10时,乙二胺四乙酸二钠(EDTA)和水中的钙镁离子生成稳定络合物,指示剂铬黑T也能与钙镁离子生成葡萄酒红色络合物,其稳定性不如EDTA与钙镁离子所生成的络合物,当用EDTA滴定接近终点时,EDTA自铬黑T的葡萄酒红色络合物夺取钙镁离子而使铬黑T指示剂游离,溶液由酒红色变为蓝色,即为终点。
3 仪器及用具
3.1 三角烧瓶:250mL;
3.2 滴定管:50mL;
3.3 刻度吸管:1mL。
4 试剂
4.1 乙二胺四乙酸二钠(EDTA)标准溶液: 0.05mol/L。
4.2 硬度缓冲溶液: (1)称取16.9g氯化铵,溶于143mL浓氨水中。(2)称取0.78g硫酸镁(或0.644g氯化镁或0.381无水硫酸镁)及1.179g乙二胺四乙酸二钠溶于50mL蒸馏水中。合并(1)&(2)并用蒸馏水定容至250mL。(可保存一个月)
4.3 铬黑T指示剂:5g/L。称取0.5g铬黑T和2g氯化羟胺(盐酸羟胺),溶于95%乙醇并定容至100mL。
5 分析步骤
5.1 取澄清水样100mL于三角烧瓶中,加入1mL硬度缓冲溶液,3滴铬黑T指示剂;
5.2 用乙二胺四乙酸二钠标准溶液激烈振荡滴定至溶液由玫瑰红变为天蓝色为止。
5.3 同时用100mL去离子水或蒸馏水做空白试验。
6 计算
c×(V-V0)
总硬度(meq/L) = --------------- ×1000
100
式中:c ---- 乙二胺四乙酸二钠标准溶液浓度,mol/L;
V0 --- 空白试验滴定消耗乙二胺四乙酸二钠标准溶液体积,mL;
V ----- 试样滴定消耗乙二胺四乙酸二钠标准溶液体积,mL;
E. 如何有效地使用溶解氧测定仪
把溶解氧电极从溶液中取出,用水冲洗干净,用滤纸小心吸干薄膜表面的水分,并放入盛有蒸馏水容器(如三角烧瓶、高脚烧杯中)靠近水面的空气上或者放入空气中,但电极表面不能占上水滴,在仪器处于“零氧校准”工作状态下,按“模式”键,仪器即进入“满度校准”工作状态,待读数稳定后,按“确定”键,贮存电极当前的满度值,满度校准结束。此时,仪器还处于“满度校准”工作状态。再按“模式”键,仪器进入“盐度设置”工作状态。
溶解氧值与盐度值有关,仪器内部预设的盐度值为0.0g/L,测量前应选择合适的盐度值(注意:一般情况下不需要进行盐度校准,仪器预设值为0.0g/L。)。
在仪器处于“满度校准”工作状态下,按“模式”键,仪器即进入盐度设置”工作状态。此时仪器显示当前设置的盐度值,可以按“▲”键或“▼”键修改盐度值,修改为实际盐度值后,按“确定”键,贮存仪器修改后盐度值,则完成盐度设置。此时,仪器还处于“盐度校准”工作状态。再按“模式”键,仪器进入“溶解氧浓度测量”工作状态。