导航:首页 > 解决方法 > 瞄准镜零位在线检测装置使用方法

瞄准镜零位在线检测装置使用方法

发布时间:2024-05-04 02:50:08

1. 绾㈠栫嚎镓挞笩鐬勫嗳鍣ㄦ庝箞璋冨嗳

璁句竴锏界焊闱讹纴鍦ㄩ澏蹇冨勭偣涓涓榛戠偣鍎匡纴浠ラ粦镣逛负涓蹇冩墦涓鍗佸瓧绾匡纴铹跺悗鍐嶉涓锏剧背澶勫畨涓鏋鏀锲哄畾鍙帮纴鍦ㄦ灙涓婂畨瑁呭ソ鐬勫嗳闀滐纴铹跺悗鎶婃灙镙揿嵏涓嬶纴阃氲繃鎶桦皠闀滀粠鏋绠¢噷鐬勫嗳濂界槠绾搁澏涓婄殑榛戠偣鍎垮浐瀹氢綇鏋韬锛岀劧钖庡皢璋冩暣鐬勫嗳闀滈噷镄勫崄瀛楀帇鍒扮槠绾搁澏涓婄殑榛戠偣鍎匡纴𨰾х揣鐬勫嗳闀滆皟鏁存棆阍銆傛灙鏀鍦ㄥ浐瀹氱姸镐佷笉锷锛屽畨瑁呭ソ鏋镙揿帇涓娄竴鍙戝瓙寮癸纴鍑诲彂锛佹煡鐪嫔脊镌镣癸纴鑻ュ亸涓婏纴鍒椤线涓婂井璋幂瀯鍑嗛暅鍗佸瓧锛屽亸涓嫔垯寰涓嫔井璋冿纴锅忓乏寰宸﹀井璋冿纴锅忓彸寰鍙冲井璋冦傚啀镓扑竴鏋鐪嬬湅锛岀収姝ゆ柟娉曞弽澶嶈皟璇曪纴鐩村埌寮圭潃镣规fe嚮涓锏界焊闱朵笂鍗佸瓧浜ゅ弶涓婄殑榛戠偣鍎匡纴鐬勫嗳闀滃氨璋冩暣濂戒简銆
镣瑰嚮

2. 瞄准镜分化线测距方法

瞄准镜分化线测距方法:划线是测不出距离的,横向的只能测量你的射击左右偏差,竖向的测量你的上下偏差,和射击抛物线,左右调好后上下抛物线就容易测出来,具体目标距离要用肉眼估算和测量仪测量。

光学瞄准镜绝大多数是采用开普勒望远系统,即由1片凸透镜为物镜,2片正像透镜为中心镜片,分化板丝,2片目镜构成的。

它所成的像在正像透镜以后为倒像。然后经过目镜转化在人眼中转化为正像。采用开普勒望远系统可以更清楚地看清物体的细节,加大远距离人眼观察远距离目标的能力。并且这种望远系统更容易设置分化板。

瞄准镜

或称光学瞄准装置(optical sight),其起源已经很难考证。据说至少在16世纪的欧洲,就已经有人尝试过在枪托上固定眼镜镜片。有文字记载,在19世纪以前,火器上已经有了望远镜式的瞄准装置,可用于在弱光条件下的瞄准。瞄准镜可以分为全息瞄准镜、内红绿点瞄准镜、激光瞄准镜。

3. 瞄准镜瞄准方法口诀

左眼闭,右眼睁,缺口对准星,准星对目标,三点线一条。

瞄准镜的调准方法:

1、设一白纸靶,在靶心处点一个黑点儿,以黑点为中心打一十字线,然后再退一百米处安一枪支固定台,在枪上安装好瞄准镜。

2、把枪栓卸下,通过折射镜从枪管里瞄准好白纸靶上的黑点儿固定住枪身,然后将调整瞄准镜里的十字压到白纸靶上的黑点儿,拧紧瞄准镜调整旋钮。

瞄准镜分类

主要分为以下三大类:望远式瞄准镜、准直式瞄准镜、反射式瞄准镜。其中以望远式瞄准镜和反射式瞄准镜最为流行。

这两类瞄准镜主要在白天使用,因此又被统称为白光瞄准镜,另外还有供夜间瞄准用的夜视瞄准镜,是在上述两类瞄准镜上加上夜视装置,而按夜视装置的种类,又可分为微光瞄准镜、红外瞄准镜。

4. 全站仪的使用方法

全站仪的使用方法
全站仪的使用方法:

1.要知道基本的测量方法和步骤。

2.了解拿取,存放。以及架设全站仪,对中整平等。

3.数据采集。了解导线,碎部和地物测量。

4.具体测角和测距。绘制草图。

5.数据传输。

6.编辑图纸,打印数据和图纸。

7.注意全站仪的搬运和存放。要保持仪器尽可能干净以及干燥。

正确调平仪器的方法:

(1)架设:将仪器架设到稳固的三脚架上,旋紧中心螺旋。

(2)粗平:看圆气泡(精度相对较低,一般为1分),分别旋转仪器的3个脚螺旋将仪器大致整平。

(3)精平:使仪器照准部上的管状水准器(或者称长气泡管)平行于住意一对脚螺旋,旋转两脚螺旋使气泡居中(最好采用左拇指法,即左右手同时转动两个脚螺旋,并且两拇指移动方向相向,左手大拇指方向与气泡管气泡移动方向相同。);然后,将照准部旋转90°,旋转另外一个脚螺旋使长气泡管气泡居中。

(4)检验:讲仪器照准部再赚90°,若长气泡管气泡仍居中,表示已经整平;若有偏差,请重复步骤(3)。正常情况下重复1~2次就会好了。

气泡是否有问题的检验:

(1)架设:将仪器架设到稳固的三脚架上,旋紧中心螺旋。

(2)粗平:看圆气泡(精度相对较低,一般为1分),分别旋转仪器的3个脚螺旋将仪器大致整平。

(3)精平同时进行检验:使仪器照准部上的管状水准器(或者称长气泡管)平行于住意一对脚螺旋,旋转两脚螺旋使气泡居中;然后,将照准部旋转180°,此时若气泡仍然居中,则管状水准器轴垂直于竖轴(长气泡管没有问题)。如气泡不居中,就需要校正。

校正方法:

(A)按照检验的步骤进行到第(3)步,确定偏差量即气泡偏离中间的差量。

(B)用改针调整长气泡管的校正螺钉,使气泡返回偏差量的1/4。若前面的差量无法精确知道,这里可大概改正;然后重复检验步骤的第(3)步骤。

(C)重复前面步骤,一般重复1~2次即可调好。调好后,再按照整平步骤进行仪器整平。

这里提及一下,在长气泡管调整后最好再确认一下圆气泡,若有偏差也调一下。

补充:气泡管气泡为什么会出现偏差?

原因:

(1)圆气泡管一般由3个螺钉固定,内部有一个波形弹簧。若3个螺钉受力不均匀时,当仪器在车辆运输过程中受颠簸就会引起受力小的螺钉松动,最好引起偏差。

(2)长气泡管一般是一端固定,另外一端可调(校正螺钉)。可调端下面有弹簧,固定端里面应该有凸形内垫圈。无论是生产装配还是维修校正,若在长气泡管调整时没有注意校正螺钉的螺纹间距,使螺钉受力不均衡,在仪器受大的颠簸后螺钉会稍微旋转、引起气泡偏差。

建议你看看网络的“全站仪”和“天顶距”等词条。
全站仪使用方法是怎样
一套基本全站仪有如下实物:仪器一台,木制脚架三副,前视对中杆两副,大反射棱镜两个,小棱镜一个,基座两台,5.0米或者5米以上长棱镜杆两根。全站仪其实是个非常容易上手的仪器,在测量之前需要架设仪器,这点你应该明白吧,无非是书上说的那些,架三脚架大致趋平,安置仪器,对中,粗平,精平,再对中,精平。然后开始后视,后视是个技术性非常高的技术活,哥们最自豪的就是在夏天热气沸腾虚光旺盛的时候后视过673米远的后视点,打的转点与GPS测出来的坐标只差X3mm,Y1mm。对好后视以后,接着要打出后视点坐标,看看跟实际的(也就是平差以后的永久坐标)差多少,如果相差一两毫米以内(放精确点的时候)就可以输入数据放前视点了。放前视点可根据坐标放,也可以根据角度距离来放,按坐标放是比较方便的。数据输入仪器以后,它会自动算出归零角度与距离,角度是待放点,测站和后视点三点连线形成的角度,将仪器拧到0°0′0〃方向的时候,说明待放点或者是前视点就在瞄准镜里的竖向十字丝上,然后就可以让跑前视的人走到这个方向,然后开始测距,距离也是待测点到仪器的距离,是仪器自己算的。它是以实际距离与计算距离的差值来衡量的,有的是实际距离减去计算距离为仪器方向前进,有的是实际距离减去计算距离为仪器方向后退,不同品牌的仪器是不一样的。测距工作的时候不能动仪器,过一会就要看看之前那个角度还归不归零。距离也归零以后,这个点就放出来了。

除了放样,还可以进行对边测量。所谓对边测量,就是对两个点之间进行平距,斜距和高差的测量。这个方法用途非常广泛,尤其在测量路线断面的时候尤为方便,不像经纬仪一样恶心。例如在一条直线上地势起伏不平,但需要在电脑上表示出来,那就非得这个不行了。这个情况下,仪器可以随便架,只要精平就可以了。首先需要找直线上一点作为参照点,仪器对好这个点上的棱镜以后点测量,这就是对边测量内的后视。然后让棱镜跑到第二个点上再点测量,然后两点间的平距,斜距和高差就计算出来了。以此类推,需要注意的是,对边测量有两种模式,第一种是从第二个点以后,包括第二个点,都是相对于第一个点的平距等数据,第二种模式是传递的方式,即第二点相对于第一点的数据,第三点相对于第二点的数据,以此类推,这个比较麻烦,第一种比较方便。不同的仪器功能不同,有的时候需要在有的点上改变棱镜高度,有的仪器可以在里面输入棱镜高就可以自动算出来,有的就不行,需要自己来加减才能得出真是高差

还有一种就是在放样的时候,架设仪器架在已知点自己估计都看不到待测点,这就需要后方交会了,后方交会是后视的一种。哥们工地有一涵洞在山沟里,两边都是高山,而恰恰已知控制点都在两边山上,仪器很重,懒得上去,于是就叫俩小兄弟一边带一棱镜上去,哥们就在山沟里随便架平仪器,分别输入两个点坐标对着棱镜测一下就可以交汇处架仪器这个点的坐标,然后就再对任意一已知点后视,就可以放前视点了。

在一个小区域内测量放点的话就需要自建坐标系,随便找两个点用来当测站点和后视点,弄清楚待测点在坐标系里的坐标就可以放了,这个据实际情况而定,就不能清楚的说出来了。

全站仪还可以用来算土地面积,填挖方放量,这些都需要你自己操作仪器的过程中自己掌握,孰能生巧。其实很容易的。

一千多字了,兄弟就给哥们采纳了吧。
全站仪的操作步骤?
全站仪的操作步骤分为四步:一、仪器的安置;二、仪器整平;三、调焦照后视置零;四、照准目标测量或放样。

拓展资料全站仪的三种测量模式: 一、角度测量。1. 首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为角度模式。

2. 盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′00〃,顺时针旋转照准部,瞄准右目标B,读取显示读数。3. 同样方法可以进行盘右观测。

4. 如果测竖直角,可在读取水平度盘的同时读取竖盘的显示读数。 二、距离测量。

1. 首先从显示屏上确定是否处于距离测量模式,如果不是,则按操作键转换为距离模式。2. 照准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出距离,HD为水平距离,VD为倾斜距离。

三、坐标测量。1. 首先从显示屏上确定是否处于坐标测量模式,如果不是,则按操作键转换为坐标模式。

2. 输入本站点O点及后视点坐标,以及仪器高、棱镜高。3. 瞄准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出点的坐标。
全站仪的详细使用方法
全站仪的使用 内容:了解全站仪的分类、等级、主要技术指标;掌握全站仪的基本操作,测角、测边、测三维坐标和三维坐标放样的原理和操作方法;了解全站仪的对边测量、悬高测量、面积测量等方法。

重点:全站仪的基本操作,测角、测边、测三维坐标和三维坐标放样的原理和操作方法。难点:全站仪测三维坐标和三维坐标放样的原理和操作方法。

教学方法:采取演示法教学。讲解拓普康全站仪使用,在课堂上每讲一项功能后,利用多媒体课室的优点,现场演示一次,并将操作过程通过投影仪投影到屏幕上,起到直观、形象的效果,使学生能迅速掌握全站仪的使用。

§ 7.1 全站仪(total station)的功能介绍 随着科学技术的不断发展,由光电测距仪,电子经纬仪,微处理仪及数据记录装置融为一体的电子速测仪(简称全站仪)正日臻成熟,逐步普及。这标志着测绘仪器的研究水平制造技术、科技含量、适用性程度等,都达到了一个新的阶段。

全站仪是指能自动地测量角度和距离,并能按一定程序和格式将测量数据传送给相应的数据采集器。全站仪自动化程度高,功能多,精度好,通过配置适当的接口,可使野外采集的测量数据直接进入计算机进行数据处理或进入自动化绘图系统。

与传统的方法相比,省去了大量的中间人工操作环节,使劳动效率和经济效益明显提高,同时也避免了人工操作,记录等过程中差错率较高的缺陷。 全站仪的厂家很多,主要的厂家及相应生产的全站仪系列有:瑞士徕卡公司生产的 TC 系列全站仪;日本 TOPCN (拓普康)公司生产的 GTS 系列;索佳公司生产的 SET 系列;宾得公司生产的 PCS 系列;尼康公司生产的 DMT 系列及瑞典捷创力公司生产的 GDM 系列全站仪。

我国南方测绘仪器公司 90 年代生产的 NTS 系列全站仪填补了我国的空白,正以崭新的面貌走向国内国际市场。 全站仪的工作特点: 1、能同时测角、测距并自动记录测量数据; 2、设有各种野外应用程序,能在测量现场得到归算结果; 3、能实现数据流;一、TOPCON 全站仪构造简介 图1为宾得全站仪 PTS-V2 ,图2为尼康 C-100 全站仪,图3为智能全站仪GTS-710,图4为蔡司Elta R系列工程全站仪,图5为徕卡TPS1100系列智能全站仪。

二、全站仪的功能介绍 1、角度测量(angle observation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠ AOB ,则: 1)当精度要求不高时: 瞄准 A 点——置零( 0 SET )——瞄准 B 点,记下水平度盘 HR 的大小。

2)当精度要求高时: —— 可用测回法( method of observation set )。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”( H SET )。

2、距离测量( distance measurement ) PSM 、PPM 的设置 —— 测距、测坐标、放样前。 1)棱镜常数(PSM )的设置。

一般: PRISM=0 (原配棱镜),-30mm (国产棱镜) 2)大气改正数( PPM )(乘常数)的设置。 输入测量时的气温( TEMP )、气压( PRESS ),或经计算后,输入 PPM 的值。

(1)功能:可测量平距 HD 、高差 VD 和斜距 SD (全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”( MEAS )。 3、坐标测量( coordinate measurement ) (1)功能:可测量目标点的三维坐标( X , Y , H )。

(2)测量原理 若输入:方位角 ,测站坐标( , );测得:水平角 和平距 。则有: 方位角: 坐标: 若输入:测站 S 高程 ,测得:仪器高 i ,棱镜高 v ,平距 ,竖直角 ,则有: 高程: (3)方法: 输入测站 S ( X , Y ,H ),仪器高 i ,棱镜高 v ——瞄准后视点 B ,将水平度盘读数设置为 ——瞄准目标棱镜点 T ,按“测量”,即可显示点 T 的三维坐标。

4、点位放样 (Layout) (1)功能:根据设计的待放样点 P 的坐标,在实地标出 P 点的平面位置及填挖高度。 (2)放样原理 1)在大致位置立棱镜,测出当前位置的坐标。

2)将当前坐标与待放样点的坐标相比较,得距离差值 dD 和角度差 dHR 或纵向差值Δ X 和横向差值Δ Y 。 3)根据显示的 dD 、dHR 或ΔX 、ΔY ,逐渐找到放样点的位置。

5、程序测量( programs ) (1)数据采集 (data collecting) (2)坐标放样 (layout) (3)对边测量(MLM)、悬高测量(REM)、面积测量(AREA)、后方交会(RESECTION) 等。 (4)数据存储管理。

包括数据的传输、数据文件的操作(改名、删除、查阅)。§ 7.2 TOPCON GTS-312 全站仪使用简介一、仪器面板外观和功能说明 面板上按键功能如下: ——进入坐标测量模式键。

◢ ——进入距离测量模式键。 ANG ——进入角度测量模式键。

MENU ——进入主菜单测量模式键。 ESC ——用于中断正在进行的操作,退回到上一级菜单。

POWER ——电源开关键 ◢ ◣ ——光标左右移动键 ▲ ▼ ——光标上下移动、翻屏键 F1 、 F2 、 F3 、 F4 ——软功能键,其功能分别对应显示屏上相应位置显示的命令。 显示屏上显示符号的含义: V ——竖盘读数;HR ——水平读盘读数(右向计数);HL ——水平读盘读数(左向计数); HD ——水平距离; VD ——仪器望远镜至棱镜间高差; SD ——斜距; * ——正在测距; N ——北坐标,x ; 。
全站仪使用方法图解
1、已知两坐标点,测另一坐标或放样另一坐标。

在一已知点架设全站仪,先水准气泡再水准管,对中后,点击坐标测量或放样,输入该坐标点坐标确定。2、输入另一已知坐标点即后视点坐标,点一次确定,另一人将三脚架架该已知坐标点上对中。

3、对中好,对讲机示意测量员OK,开始测量4、旋转全站仪照准后视点,固定,确定。点确定自动打点三次以上点击确定。

5、将三脚架架设到要测点上,旋转全站仪照准点击测量。打点三次以上,基于平均为准。

确定。或输入要放样点坐标确定,旋转全站仪至水平 角为零,固定微调至零,指挥三脚架移动到全站仪方向,点击测量,指挥其前后移动,直至误差为零毫米。

定点。(4)瞄准镜零位在线检测装置使用方法扩展阅读:全站仪,即全站型电子测距仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。

与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。

广泛用于地上大型建筑和地下隧道施工等精密工程测量或变形监测领域。全站仪与光学经纬仪区别在于度盘读数及显示系统,光学经纬仪的水平度盘和竖直度盘及其读数装置是分别采用(编码盘)或两个相同的光栅度盘和读数传感器进行角度测量的。

根据测角精度可分为0.5″,1″,2″,3″,5″,7″等几个等级。全站仪采用了光电扫描测角系统,其类型主要有:编码盘测角系统、光栅盘测角系统及动态(光栅盘)测角系统等三种。

按其外观结构分类 全站仪按其外观结构可分为两类:(1)积木型(Molar,又称组合型) 早期的全站仪,大都是积木型结构,即电子速测仪、电子经纬仪、电子记录器各是一个整体,可以分离使用,也可以通过电缆或接口把它们组合起来,形成完整的全站仪。(2)整体型(Integral) 随着电子测距仪进一步的轻巧化,现代的全站仪大都把测距,测角和记录单元在光学、机械等方面设计成一个不可分割的整体,其中测距仪的发射轴、接收轴和望远镜的视准轴为同轴结构。

这对保证较大垂直角条件下的距离测量精度非常有利。按测量功能分类 全站仪按测量功能分类,可分成四类:TCRP全站仪 (1)经典型全站仪(Classical total station) 经典型全站仪也称为常规全站仪,它具备全站仪电子测角、电子测距和数据自动记录等基本功能,有的还可以运行厂家或用户自主开发的机载测量程序。

其经典代表为徕卡公司的TC系列全站仪。(2)机动型全站仪(Motorized total station) 在经典全站仪的基础上安装轴系步进电机,可自动驱动全站仪照准部和望远镜的旋转。

在计算机的在线控制下,机动型系列全站仪可按计算机给定的方向值自动照准目标,并可实现自动正、倒镜测量。徕卡TCM系列全站仪就是典型的机动型全站仪。

免棱镜全站仪 (3)无合作目标性全站仪(Reflectorless total station) 无合作目标型全站仪是指在无反射棱镜的条件下,可对一般的目标直接测距的全站仪。因此,对不便安置反射棱镜的目标进行测量,无合作目标型全站仪具有明显优势。

如徕卡TCR系列全站仪,无合作目标距离测程可达1000m,可广泛用于地籍测量,房产测量和施工测量等。(4)智能型全站仪(Robotic total station) 在自动化全站仪的基础上,仪器安装自动目标识别与照准的新功能,因此在自动化的进程中,全站仪进一步克服了需要人工照准目标的重大缺陷,实现了全站仪的智能化。

在相关软件的控制下,智能型全站仪在无人干预的条件下可自动完成多个目标的识别、照准与测量。因此,智能型全站仪又称为“测量机器人”,典型的代表有徕卡的TCA型全站仪等。

参考资料:搜狗网络-全站仪。
如何使用全站仪?
全站仪放线步骤

一;仪器架设

① 脚架伸平胸口处,较居中放在控制点上方。

② 安置仪器,对中控制点。

③ 粗整平,看圆水准气泡。

④ 粗整平后再看对中器是否对中。

⑤ 精整平,倾斜归零。再检查是否对中即可。

二;后视

① 先输入测站坐标:菜单---坐标测量---测站坐标,输入测站坐标。

② 再输入后视坐标:按一次退出键(esc)到后视坐标,输入后

视坐标。

③ 后视定向:输入好后视坐标后按OK键,出现NO/YES,此时瞄准凌镜中心,按YES键,后视成功。

④ 复查后视:后视好后按退出键到(测站坐标/后视定向/测量)按测量键复测后视控制点坐标是否一致(误差在10mm内即可)。

三;放样测量

① 后视好后返回菜单,选择放样测量。

② 选择放样数据,输入桩点坐标。

③ 按左右摆动键(F3),把方向归零,锁定。

④ 指挥拿凌镜人左右摆动到你凌镜范围内,按观测键,此时仪器出现向前或向后,移动后再测直到误差在1mm内即可。

注意事项:1、仪器要对中,整平,2、后视要瞄准好。3、输入放样数据要核对。4、测量的时候不要碰到仪器。5、转动仪器的时候要先送开制动螺栓。6、放好的点用尺子去量看是否正确。以上是我半个小时一点一点打的,顶一下吧。有机会Q聊

1018793208
全站仪的操作步骤?
全站仪的操作步骤分为四步:一、仪器的安置;二、仪器整平;三、调焦照后视置零;四、照准目标测量或放样。

拓展资料

全站仪的三种测量模式:

一、角度测量。1. 首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为角度模式。2. 盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′00〃,顺时针旋转照准部,瞄准右目标B,读取显示读数。3. 同样方法可以进行盘右观测。4. 如果测竖直角,可在读取水平度盘的同时读取竖盘的显示读数。

二、距离测量。1. 首先从显示屏上确定是否处于距离测量模式,如果不是,则按操作键转换为距离模式。2. 照准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出距离,HD为水平距离,VD为倾斜距离。

三、坐标测量。1. 首先从显示屏上确定是否处于坐标测量模式,如果不是,则按操作键转换为坐标模式。2. 输入本站点O点及后视点坐标,以及仪器高、棱镜高。3. 瞄准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出点的坐标。
全站仪的具体用法
1.野外作业前准备工作:(1)检查全站仪是否在鉴定证书合格期内,确定是否为可用正常设备;(2)检视全站仪脚螺旋和微调等螺旋是否在初始零位置;仪器箱内量高钢尺,海拔仪和温度计等工具是否齐全;(3)在全站仪中新建项目,将已知控制点坐标和放样点设计坐标上传到全站仪的新建项目中。

2.到达作业现场后,打开仪器箱,在已知控制点处架设全站仪,并开机预热2-3分钟,查看海拔仪和温度计,读取气压和温度,并输入全站仪的指定项目中。3.对中整平全站仪,进行测站定向工作。

(1)输入测站点点号A,全站仪自动提取对应已知控制点的坐标和高程,确认后量取和输入仪器高;(2)询问和输入后视点点号B,全站仪自动提取对应已知控制点的坐标和高程,询问和输入后视点棱镜高,最后回报确认后视点点号及棱镜高。(3)望远镜瞄准后视点棱镜,然后按测量键并确认,完成测站后视定向工作。

(4)定向起算边长的检核:使用全战仪内的放样功能,放样后视点B,检查起算边长误差是否符合精度,通常实测边长与坐标反算边长的相对误差应小于1/4000。否则,测站点或后视点就有问题。

4.开始放样工作。(1)输入放样点点号,全站仪自动提取对应已知控制点的坐标和高程,并显示放样点与测站点的方向和距离。

(2)将水平度盘旋转到放样点方向,并锁定水平度盘,使用望远镜粗瞄,指导司尺员到达预定放样点方向上,通知司尺员面对仪器方向向左/向右移动棱镜杆。(3)指导司尺员调整棱镜,使棱镜在望远镜视线以内,最终到达全战仪望远镜十字丝附近,然后测量距离,全战仪显示当前棱镜位置的前后偏距,并通知司尺员相对仪器延长/缩短的距离。

(4)接近放样点设计坐标位置处时,望远镜瞄准棱镜杆根部,指导司尺员调整方向,使得棱镜杆根部位于望远镜竖丝方向上,然后搏动竖直方向瞄准棱镜,再次测量距离,再次通知司尺员相对仪器延长/缩短的距离,直至最终放样点的方向和距离的偏距都满足放样精度要求。(在以上放样过程中,水平度盘始终锁定在放样点的方向上,测量员须指导司尺员来调整棱镜位置到达指定的方向)(5)确认并通知司尺员钉桩,在桩位处再次立好棱镜后,询问棱镜高,测站修改棱镜高后,进行测量并记录实际放样点的坐标和高程。

5.向甲方现场人员指认放样点桩位,并在放样交验单上签字确认。6.放样完成后,回到室内从全战仪导出放样点桩位的实测坐标和高程,并编写放样报告书,如放样交验单,放样点坐标表等。

5. 坦克的火控是什么意思

火控系统即火力控制系统,用于控制武器的搜索/瞄准/攻击
坦克火控系统包括潜望镜、瞄准镜、激光测距仪、坦克夜视仪、高低机和方向机、火炮稳定器和带有多种传感器的火控计算机。下面我们将逐一介绍。

1.潜望镜

供观察用的潜望镜,分为无放大倍率和放大倍率的两种。无放大倍率的潜望镜,是根据光学中平面镜成像的原理,由镜体加上下反射镜等组成的。根据需要改变上下反射镜相对位置可制成不同潜望高度的潜望镜,有的还可制成旋转和俯仰式的,以便回转周视,增大观察范围。坦克上有车长观察潜望镜,炮长、二炮手用于搜索、观察的炮手潜望镜,驾驶员潜望镜,以及水陆坦克高潜望镜。

有放大倍率的潜望镜可以增大视见距离。它是由上、下反射镜和物镜组,分划镜(有的没有),目镜组和镜体等组成的。有昼视、昼夜互换、昼夜组合、测光测距与昼夜视组合,稳像式的观瞄测距组合系统等类型。

指挥潜望镜安装在炮塔的指挥塔前方位置上,可随指挥塔转动和相对指挥塔俯仰。指挥潜望镜是潜望镜和望远镜的结合,它既能观察较近目标,又能对较远的目标进行放大。它是车长用来观察战场,搜索和指示目标,判定火炮至目标的距离和测量射弹偏差用的望远观察仪器。

2.瞄准镜

坦克炮瞄准镜是供炮长操纵火炮和并列机枪时,用以发现目标,直接瞄准目标,测量距离,修正射弹偏差,观察战场,观察弹着点的一种光学仪器。坦克炮瞄准镜大多是光学绞链式直筒望远瞄准镜。它由物镜组、分划镜、光学绞链、变倍系统、目镜组和镜体等组成。它装在火炮左侧,镜头部分固定在火炮摇架左侧的瞄准镜支架上,接眼的目镜部分固定在炮长座位前面的活动吊架上,以便于炮长瞄准用。火炮俯仰时,通过镜筒中部的活动绞链使镜头的物镜一端随之俯仰,并通过炮塔前部椭圆形开口瞄准目标。目镜处有护眼圈和护额垫,以保证坦克颠簸时不致碰伤乘员。这种瞄准镜通常能将目标放大7~10倍(辨认远处目标和提高瞄准精度时用)和3.5~5倍(视场角较大,一般用作观察战场,搜索目标)两档,可以根据不同的需要,变换放大倍率。这种瞄准镜利用测距分划,只能对事先已知尺寸为2.7米高的目标(如敌坦克)进行测距,精度低,1000米的距离误差竟达80~100米。在装有较先进的火控系统的坦克上,这种瞄准镜仅作为辅助瞄准装置使用,即在先进的火控系统出现故障时才使用。

近年来出现的指挥仪式火控系统中,炮长采用了独立稳定式瞄准镜,或称稳像式激光测距瞄准镜,如豹Ⅱ坦克上的EMSE-15型炮手用综合式瞄准镜。该瞄准镜内有一具备有两个放大倍率(如8倍、16倍)的单目光学潜望式瞄准镜、钕玻璃激光测距仪,以及稳定瞄准线的设备。稳定的主瞄准线在方向上有一定的活动范围,高低方向上则取决于火炮瞄准角的修正角度。其瞄准线的稳定多是在平行光路中通过稳定反射镜来实现的。光线从入射窗进来后,经反射镜反射,通过透镜、直角棱镜在分划镜上成像,观察者则通过目镜和棱镜组进行观察。这种指挥仪式火控系统的一般工作过程如下:炮长通过控制装置使瞄准线对准目标,此时火炮自动随动于瞄准线。对准目标后进行测距和跟踪,随后,火控计算机根据输入的距离、目标速度、倾斜角与各弹道修正参数,计算出提前角。该提前角信息仅输送给炮塔和火炮驱动系统,驱动火炮到达允许的射击提前位置。一旦火炮进入计算机所规定的允许射击位置,就自动进行射击。为了判断火炮是否进入允许射击位置,一般在系统中设有一个具有逻辑判断功能的重合电路或称射击门电路。由于这种瞄准镜有独立的瞄准线稳定装置,炮长直接控制的是瞄准线而不是火炮,需要稳定的往往只是一个棱镜或镜座,质量很小,所以瞄准线的稳定精度很高,可达0.2密位,远远超过了火炮的稳定精度,使射击精度大为提高,可以实现行进间对运动目标的射击。必须指出,瞄准线独立于火炮,动态精度虽然提高,但静态精度却有所降低。

激光测距仪与昼夜间瞄准镜合成一体以及瞄准线的稳定,可使炮长不论在白天还是夜间,不论在原地还是在行进中都能判定目标距离并对目标进行准确的射击。美国的XM-803坦克装上这种瞄准镜以32公里/小时的速度越野时,瞄准线误差值在水平和高低两个方向上不大于0.5密位。坦克炮有了这种瞄准镜和其他先进的火控部件组成的火控系统,不管坦克如何颠簸,都能保证有较高的首发命中率。

3.激光测距仪

激光测距仪是用激光来测定坦克至目标距离的一种仪器。利用激光测距比用目测判断距离或用光学测距的精度都高,而且精度不受距离远近的影响;激光测距仪体积小,重量轻,操作和使用方便,易于掌握;抗干扰性强。但是,它在大雾弥漫能见度差激光衰减严重的情况下,无法测距。

激光测距仪的测距原理是怎样的呢?大家知道,距离=速度×时间。激光测距仪就是根据这个基本道理设计的。测距时,激光测距仪向目标发时一个激光脉冲,由于目标的漫反射,部分能量被反射回激光测距仪。激光测距仪测量出从发射激光脉冲到接收到回波激光脉冲所经过的时间t、则激光测距仪到目标的距离S就可以求出。因为光速C约为30万公里/秒,在激光测距仪测量出的时间t内,激光经过一个来回路程,所以1/2Ct就是激光测距仪到被测目标的距离S。但是,由于光速极快,其运行几百米、几千米的时间,是用钟表无法精确测出的。采用时标振荡器(石英晶体振荡器)可以计时。这种振荡器振荡频率极高,比如每秒钟能产生3000万个晶振脉冲,每个脉冲的持续时间就是3000万分之一秒。测距时,在发射激光脉冲的同时,计数器开始记录晶振脉冲的个数,一直记到接收到回波激光为止。如果共记录n个脉冲,那么,n×3×10-7秒就是激光脉冲在激光测距仪和目标间往返一次的时间。显然,用这种方法可以精确地测量出时间t,从而算出目标的精确距离。

激光测距仪种类繁多,性能各异。但其结构都包括电源、激光器、激光发射光学系统(发射望远镜)、激光接收光学系统(接收望远镜)、电控系统(光电元件、放大整形、门控电路、时标振荡器、计数器等)、距离显示器等几部分。激光测距仪的工作过程如下:接通电源,激光测距仪及其时标振荡器开始工作。这时由于门关闭,时标振荡器的脉冲信号不能进入计数器。当测距仪对准目标且炮长按下触发按钮时,激光器就发出一个很强很窄的激光脉中。激光器发出的激光要分成两路:一路激光束经过发射光学系统,使激光束发散角进一步减小后射出并经大气传输打到目标上;另一路就是其中的极小一部分激光立即由取样棱镜的反射而进入光电元件的光敏面上,作为发射参考信号(取样信号或称主波信号),来标定激光出发的时间。参考讯号到达光电转换器(光电倍增管等),将光讯号转换成为电信号,即光脉冲变成电脉冲。这个电脉冲经放大整形后送入时间测量系统,打开电子计数器的电子门,此时,时标振荡器的脉冲信号进入计数器,计录器开始记录脉冲个数(即开始计算时间)。而射向目标的激光脉冲,由于目标的漫反射作用,总有一部分光从原路反射回来,而进入接收光学系统,由目标返回的激光脉冲(接收信号或称回波信号)同样也经过光电转换器、放大整形电路而进入时间测量系统,回波信号推动电子门发出关门指令,使电子门关闭,时标振荡器的脉冲信号不能进入计数器内,计数器停止计数(停止计算时间)。时间测量系统的计数器把所记录的脉冲个数经译码电路换算成距离,通过距离显示器显示出来,所显示的数字,就是被测目标的距离。同时,把测出的目标距离信息自动输入火控计算机。

激光测距瞄准镜借助瞄准镜视场内的指标可与坦克武器一起进行校正。独立式激光测距仪是根据望远镜原理制成的接收望远镜和发射镜望远镜各有其独自光学元件的测距仪。其主机部分(收、发机部分)通常安装在坦克炮塔外部的装甲匣内,其控制部分位于炮长和车长的工作位置上。独立式激光测距仪通常是借助坦克炮瞄准目标的,这时,两者的光轴必须一致(两者同时对准一个目标)。也就是说炮长通过瞄准镜瞄准目标后,激光测距仪也对准这个目标,只要按下激光发射按钮,就可以测出目标的距离并在距离显示器上显示出距离数值,使用起来非常方便。

现代坦克用激光测距仪测距范围为300~10000米,测距误差为±5~10米,每分钟能测距6~12次,最高达每秒钟1次,在各种气候条件下测距的可靠性达99%。在-40℃~+50℃的温度下都能正常工作。但是由于激光的光束较狭窄,对准目标较困难,所以当目标比较隐蔽,其前后有烟带、树木、土堆或农作物(仍可见目标)等时,不易测得其真实目标距离,目前有的已有“选择”数据的能力,由乘员控制来解决,即在一次发射中,能选择读第一或第二或第三返回的数据,而舍弃其他数据。美国M-1坦克采用的二氧化碳激光测距仪比较简单,测距效能高,对人眼也安全;该测距仪和热成像仪一体化之后,能够昼夜测距。所以,它是一种较理想的激光测距仪。

4.夜视仪

第二次世界大战后期德国人在车辆上安装了一种仪器,使车辆在黑夜不开灯就可高速行驶,从而把V-2火箭在夜间送往前线,成功地避开了同盟国军队的监视和空袭。这种仪器就是最早的坦克夜视仪。现在的主动红外夜视仪就是由它演变而来的。所谓坦克夜视仪就是利用红外线或放大天然微光原理供坦克乘员进行夜间观察和瞄准的仪器。现代坦克上主要用主动红外夜视仪、被动红外夜视仪和微光夜视仪。

(1)主动红外夜视仪

红外夜视仪是用目标(物件、人员)发出的或反射回来的红外线进行观察的夜视仪器。现代坦克装配有驾驶员红外夜视仪、车长红外夜视仪、炮长红外夜视仪和炮长红外夜间瞄准镜。主动红外夜视仪靠自带红外光源(红外探照灯)照射目标,利用被目标反射回来的红外线转换成可见图像,由红外探照灯、观察镜、电源三部分组成的。由于自然界物体的温度较低,辐射出的红外线能量很小,不能满足仪器的成像要求,所以需要红外探照灯或带有红外滤光玻璃的白炽探照灯来发射人眼行不见的红外辐射。主动红外夜视仪的工作原理如下:当接通电源后,红外探照灯发射出红外线,照射前方目标,由主动红外夜视仪中的观察镜的物镜接收目标反射回来的红外线,在红外交像管的光电阴极面上形成目标的红外光学图像,通过变像管将不可见的红外目标像换成人眼可见的目标图像,在荧光屏上显示出来,于是人眼就可通过观察镜的目镜观察到目标的图像。目前,坦克驾驶员红外夜视仪的视距(目标是坦克)为60~100米,车长红外夜视仪的视距(目标是坦克)为800~1000米,炮长红外夜间瞄准镜的视距为1200米,有的可达1500米。主动红外夜视仪因为有红外探照灯照明场景,光束照射到目标上将使景物间形成了较显着的明暗反差,所以图像消晰,利于观察但是容易自我暴露(红外探照灯向外发射红外线、容易被红外探测器发现)而招来火力攻击,而且观察的范围只限于被照明的景物,视距也受到探照灯的尺寸和功率的限制,红外探照灯易被打坏,因而逐步为各种被动式的夜视仪器所代替。

(2)微光夜视仪

夜间的月光、星光、银河系的亮光和大气辉光等,通称为“微光”。利用夜空的微光并加以放大,使人眼能看得见目标图像的一种仪器称为微光夜视仪。微光夜视仪的总体结构与主动式红外线夜视仪基本相同,唯一的区别是省去了红外线光源——红外探照灯,所以它是一种被动式夜视仪器。微光夜视仪的关键部件是像增强器,它把微弱夜天光(其照度低于0.1勒克斯)照明下人眼分辨不清的景物图像转换成人眼可看清的可见光景物图像。微光夜视仪工作原理如下:其光学系统的物镜接收目标反射的自然微光,在像增强器的第一级光电阴极面上形成极为微弱的目标光学图像,经像增强器增强(其亮度增益通常为几万倍)后,在最后一级荧光屏上显示可供人眼观察的目标图像。微光夜视仪构造简单,体积较小,耗电较少,特别是不需人工的红外光源,因而使用安全可靠,不易暴露,从而提高了坦克在夜间的隐蔽性。英军在马岛战争中,借助这种夜视设备最终占领了马岛,就是个明证。但是,微光夜视仪的观察效果和作用距离,受周围环境的自然照度(星光或辉光的亮度)和大气透明度影响较大,在全黑条件下几乎不能工作。与主动红外夜视仪相比,图像不如后者清晰。特别是当天空中有密布的浓云和贴近地面的烟雾与无定向的散射将使景物的照度和对比度明显下降,会严重地影响观察效果。所以在某些坦克上还同时装有主动红外夜视仪或被动红外夜视仪。利用级联式像增强器的微光夜视仪,基本上能符合战术性能要求,但它遇到炮口焰、爆炸闪光等会产生模糊现象,最后一级图像还有畸变,因而不得不时常中断工作。在像增强器的光电阴极和荧光屏之间插入一个具有电子倍增功能的器件,可以避免闪光造成的模糊现象。目前,较先进的微光夜视仪的夜视距离在星光下已达到1600米,月光下已达2700米。如果把像增强器加在电视机的光导摄像管面前,那么电视机就可以在微光下工作,成为全被动放大的夜视仪器。豹Ⅰ坦克上的PZB-200型坦克瞄准镜就是这一种。这种瞄准镜是由安装在坦克炮上方的电视摄像机、两个位于车长和炮长前面的监视器、操纵台和连接电缆组成的。当照度为10-4勒克斯时,使用该瞄准镜可在1500米距离内进行射击。

(3)被动红外夜视仪

大家知道,响尾蛇的眼睛已退化得快成为瞎子了,但它却能敏捷地捉住老鼠及其他小动物,是因为在响尾蛇的眼与鼻之间的小“颊窝”热敏感器官(热源测位器),能接收小动物身上发射出来的红外辐射,周围温度变化在0.003℃它就能感到,且能定方位,引导响尾蛇去猎取食物。被动红外夜视仪就是根据这种现象研制成的。它是利用红外探测器将目标与背景间、目标各部分间的辐射差接收后,形成可见的图像显示出来,是供人观察的一种夜视仪。它可利用人体、坦克发动机废气等发出的微弱红外光源进行观察、瞄准。由于它工作在8~14微米的热红外波段,可将处于常温下的景物的热辐射分布图像加以记录并转换成可见的光图像显示出来,所以又称为热成像仪。M-1和豹Ⅱ坦克均装备有热成像仪。

被动红外夜视仪是利用光学扫描技术和对中、远红外辐射敏感的固体半导体材料,将地物辐射的红外能量转变成电信号,把电信号处理放大后,再转变成电信号,把电信号处理放大后,转变成可见光图像的。来自目标的热辐射通过输入光学镜组(无焦点)照射到扫描器上,并通过一个红外平行光物镜聚焦在探测器上。探测器将热辐射信号转换成电信号。电信号经过相应放大后通过发光二极管转换成可见光。通过平行光镜头将发光二级管射线控制在扫描镜的背面。用这种方式,在任何情况下都必然在机械上保证接收热成像和发光二极管显像的同步性。因此,可以看到在发光二级管组件中产生、由扫描器组合的“热图像”。致冷器的作用是提高系统的灵敏度,减少探测器本身的热辐射。

被动红外夜视仪自身无红外光源,只依赖目标与背景间、目标各部份间的温差而产生的热辐射成像,因而不受周围环境的自然照明条件影响;用它可透过雾、雨、雪观察目标甚至能透过稀疏的丛林进行观察,能透过伪装,探测出隐蔽的车辆和火炮的位置,甚至能辨认机场上刚起不久的飞机留下的“热痕”轮廓;具有良好的隐蔽性,不易被敌方发现和干扰,使用安全可靠;它不会由于炮口焰、炸弹爆炸等产生致盲效应;对坦克发动机和刚发射过的枪管、炮管等具有较强热辐射源的目标,它的视距可达数公里。现代较先进的主战坦克装备的被动红外夜视仪视距一般为1200~1500米,最大已达3000米。但是,热成像仪需要附加的制冷设备不易保证及时更换;冷却探测器的气瓶不易得到,换瓶后制冷器系统的污染也是个问题,角度辨率还比较低,目标的细节难以辨认;它所显示的温度对比图像与可见光对比的图像有所差异,人们观察不习惯;敌方在含有防红外药剂的烟幕或装备防热红外侦察的伪装装置掩护下,可能照常能够机动。

总之,由于坦克上装有这些夜视仪器,在夜间能看清周围的目标,所以坦克变成了夜战的能手。

5.方向机和高低机

对坦克火炮的操纵和稳定是为人们最先注意的问题。现代坦克上装的动力传动装置,以保证最快的瞄准速度并保证迅速地将火力从一个目标转向另一个目标。此外,火炮还需要最小稳定瞄准速度以保证对目标的精确瞄准。现代坦克的最小瞄准速度为0.05°~0.1°/秒不等,而炮塔的急转速度已提高到30°/秒和30°/秒以上。

一代坦克炮有两套操作机构可使用。一套是手工操作,由炮手左手摇动方向机、右手摇动高低机,实施跟踪和瞄准;另一套是电操纵,高低向一般为电液式,由炮长控制,水平向由炮长通过电机放大机控制。前者使用可靠,但速度慢,现代坦克留作备用。后者既可实施高速跟踪,又能实施精确瞄准,是常用机构。早期坦克仅有手工操作机构。

(1)炮塔方向机

坦克炮大都安装在可旋转的炮塔上。在战斗时,炮塔应能同速转动,使火炮对准随时出现的目标,炮塔还应能低速转动以对目标进行精确瞄准,或以某一任意速度转动使火炮跟踪敌人活动目标,进行概略瞄准或行进间瞄准等等。炮塔方向机就是用来回转炮塔的,它一般由炮手操纵,但在近代坦克上,为了使车长发现新的目标时能直接将火炮调转到新目标力向,以提高火力机动性,车长大都能超越炮长直接操纵炮塔。

炮塔方向机一般是由炮塔座圈、方向机减速箱和驱动装置等部分组成的。炮塔座圈相当于一个大的向心推力球轴承,用来支承炮塔,并使炮塔能相对于车体灵活转动。行军时,为了将炮塔可靠地固定住,采用炮塔行军固定器。方向机减速箱简称方向机。它固定在炮塔上,直接用来驱动炮塔。驱动装置用来驱动方向机减速箱。现代坦克在迅速转移火力或者使用稳定器时用动力驱动,即用电驱动或液压驱动。动力驱动的能源是坦克内的蓄电池和发电机。当不使用稳定器或动力驱动装置发生故障而需要转动炮塔时,用于驱动。在采用双向稳定器的坦克上,方向稳定器产生的信号,通过动力驱动装置来驱动方向机减速箱。目前,方向机的转速可快可慢,通常可使炮塔以0.05°~30°/秒的任意转速左右回转,十分灵活。

(2)高低机

高低机固定在炮框左侧,用来赋予现代坦克炮以-10°~+20°的高低射角。高低机主要是由减速机构、保险联轴器和解脱装置组成的。减速机构用来赋予火炮以高低射角和使火炮进行瞄准。保险联轴器用于坦克行进间火炮剧烈颠震时,保护高低机的零件不受损坏。解脱装置用来使蜗杆和蜗轮分离。

手摇瞄准时,转动转轮,动力经减速机构使火炮绕耳轴俯仰。利用稳定器操纵台瞄准时,解脱装置使蜗杆和蜗轮分离,因而火炮不受高低机控制,即可使用稳定器进行高低瞄准,使用高低稳定器时火炮可在0.07°~4.5°/秒速度范围内进行俯仰瞄准,快速地改变射击距离,并准确地捕捉目标。

6.火炮稳定器

坦克在起伏不平或曲折的道路上行驶,会使火炮因车体振动而偏离瞄准角即射角或因坦克转向而偏离原方位角。在这种情况下,即使通过瞄准镜发现了目标,也难以操纵火炮高低机和方向机在短促时间内完成精确瞄准与准确射击。因而需要安装一种自动调节装置,以保证火炮不因车体的振动而改变已瞄准的方位。这种装置就是火炮稳定器,它可将火炮和并列机枪稳定在所赋予的射角和射向上。火炮稳定器分为单向和双向两种。仅有火炮高低稳定的是单向稳定器,也称高低稳定器。不仅能高低稳定,而且也能实现方向稳定的是双向稳定器。现代主战坦克大多装了双向稳定器。采用火炮双向稳定器,可使坦克运动时火炮和并列机枪自动地保持在所赋予的高低和方向位置上,从而提高行进间射击的精度;可用一个操纵台实现高低或水平方向的瞄准,既轻便,又平稳;车长可以超越炮长而直接控制稳定器给炮长指示目标;在火炮不需要稳定时,可用电传动机构来驱动炮塔。

那么,火炮稳定器为什么能使火炮不受车体颠簸的影响呢?这好比人们抱着电视机坐在行驶的汽车上,汽车左右倾斜或前后俯仰,人都能感觉出来,并会通过神经系统驱使身体向相反的方向倾斜或俯仰,从而抵消摇晃、颠簸的作用。坦克火炮稳定器正是一种相当于人体这种功能的装置。它是由测感机构和执行机构组成的。相当于人的感觉器官的测感机构,专门用来测量和感受坦克车体左右摇摆或前后俯仰的角度大小和速度的快慢。相当于人之手脚的执行机构,根据测感机构测量出坦克车体水平摆动、俯仰角的大小和俯仰速度的快慢,使炮身向相反的方向摆动和俯仰,以抵消车体的晃动和颠簸。

火炮稳定器是由陀螺仪组、操纵台、动力油缸、液压放大机、电机放大机和炮塔电功机等组成的。现举例说明其简单原理:例如,火控计算机定出火炮射击高低角是0.1°,高低方向的火炮稳定器就将火炮身管稳定在0.1°的位置上。由于火炮身管受车体上下振动的影响,高低角必然会发生变化。如果炮管台高0.05°,高低稳定器中的测感机构——陀螺仪等就会立刻感受到炮管变化0.05°,并将感受到的这个变化量变成电信号,放大后,通过执行机构——电动机和动力油缸等对火炮加修正力,使炮管迅速向下转动0.05°,恢复到高低角原定的0.1°位置上。此时测感机构就没有信号输出,修正力也就立刻消失,炮管也就不再转动。由于这个修正过程是在很短的时间内完成的,因此,尽管炮管受车体颠簸振动发生变化,但修正合力会使坦克火炮仍能保持在预定射角的允许范围内。双向稳定器与单向稳定器的工作原理基本相同,都是利用陀螺仪的定轴性进行稳定,利用陀螺仪的进动性进行瞄准的。所不同的是为了稳定火炮的方向,将陀螺仪的安装方向转了90°。稳定精度是评定火炮稳定器的主要指标。据报导,M-1坦克、豹Ⅱ坦克高低瞄准的稳定精度是0.2~0.15密位,方向瞄准的稳定精度是0.4~0.3密位。

7.火控计算机

火控计算机是一种自动赋予火炮射角的仪器,是一个数据处理系统,它是火控系统的核心部分。炮长用瞄准镜搜索到目标后,进行瞄准并通过激光测距仪测出日标距离,该距离数据将自动输入火控计算机,火控计算机根据目标距离、选用的弹种、内外弹道数据以及炮管磨损、耳轴倾斜、气温、药温、风力、风向、初速等的修正量(可用各种传感器测量,也可用人工装定)进行弹道解算,解算出的瞄准角和方向提前角被送到瞄准镜并自动装定表尺,同时输出电信号控制火炮稳定器赋予火炮瞄准角和方向提前角,并自动调整好火炮的位置,炮长在瞄准镜内进行二次瞄准即可击发射击。除开始瞄准、二次瞄准和弹种选择外,其他工作程序完全自动化,这不仅缩短了火炮射击时间,而且提高了火炮射击精度,使在1500米射程上的命中率可提高70%以上,即使射程提高一倍仍然可以保持命中率。

火控计算机的种类很多,数字式电子弹道计算机比较先进。因为它既能指挥控制坦克炮的射击,又能指挥控制反坦克导弹的发射,有利于在坦克上采用导弹武器;它比模拟式计算机更能满足增强坦克的火力的要求,而且可与机载、舰载计算机通用;电子弹道计算机的计算精度高,并且有记忆存储、逻辑判断的能力。

火控计算机是由输入装置、运算器、存储器、控制器和输出装置等组成的。简易的火控计算机连存储器都没有,用距离译码来控制运算。输入装置用来输入原始数据和计算程序。存储器用来保存和记录原始数据、运算步骤及中间结果。运算器是对代码进行算术运算和逻辑运算等各种运算的装置。控制器用来实现机器各部份的联系和控制,保证计算过程的自动进行。输出装置用来输出计算结果。

弹道计算机的道理和算盘的道理是一样的:要算一道题,先拿到任务书(相当于计算机的输入装置),然后根据需要把记录在纸上的数据(相当于存储器),有顺序地取到算盘(相当于运算器)上,人用手指拨珠子并决定进行何种运算(相当于控制器),最后把计算结果写在报告书(相当于控制器),最后把计算结果写在报告书(相当于输出装置)上。但是,火控计算机与算盘有不同之处:算盘是一颗一颗珠子拨算,而且要考虑对中间结果的处理,火控计算机则每秒可以自动进行几十万次的运算。装有这么一套先进综合火控系统的主战坦克,无论在白天或黑夜,无论是处于原地还是行进间,都能又准又快地确定火炮射击的方向与高低角,保证火炮迅速地瞄准敌人的目标(静止或活动的目标),并把它们击毁。

阅读全文

与瞄准镜零位在线检测装置使用方法相关的资料

热点内容
茶几安装方法 浏览:815
亿通手机截屏方法 浏览:148
东原燃气壁挂炉使用方法 浏览:921
教师常用的指导方法有哪些 浏览:268
产品成本计算方法概述教学设计 浏览:635
lamer神奇面霜使用方法 浏览:380
微软平板电脑救砖方法 浏览:908
人力分析有哪些方法 浏览:751
hb101活力素使用方法 浏览:647
水利基金计算方法 浏览:213
最简单的原点赞美方法 浏览:177
你有几种解决数学故事问题的方法 浏览:37
地砖可以用什么方法固定 浏览:696
葡萄虫最佳防治方法 浏览:138
方管简单的拼接方法 浏览:726
国足训练方法视频大全 浏览:295
华为手机快捷开关在哪里设置方法 浏览:58
低分化癌是怎么治疗方法 浏览:479
姬存希眼霜使用方法 浏览:319
铁锅的安装方法视频 浏览:930