‘壹’ 络合铁的测定方法
甘薯中是含有络合铁(NaFeEDTA)的。
NaFeEDTA是一种性质稳定的络合型铁强化剂,生物利用率高,不易受食物中铁吸收抑制因子的影响,对食物载体色泽、口感等感官指标的影响较小,被认为是目前最具前景的铁营养补充剂。
因此,研究一种直接准确测定酱油中NaFeEDTA含量的方法对铁强化酱油质量控制和市场监测有着极为重要的意义。
但是,现有的测定方法中,原子吸收分光光度法只能测定铁强化酱油中总的铁的含量,而直接用紫外吸收分光光度法扣除本底测定时[1],酱油中的防腐剂、氨基酸类、核酸类、色素及其他有机酸类等物质在紫外光区都有较强的吸收,势必干扰测定结果,并且需要有强铁化酱油造成方法的局限性。本研究希望获得一种既可消除各种游离铁的干扰,又可将空白酱油本身的颜色干扰扣除的快速测定铁强化酱油中NaFeEDTA含量的有效方法。
1. 材料与方法
1.1 仪器试剂
1.1.1 仪器 上海分析仪器厂UV-756CTR型紫外可见分光光度计
1.1.2 试剂 对照品:NaFeEDTA (sigma公司),硫氰酸氨、过硫酸氨、浓盐酸、甲醇、乙醇、丙酮、三氯化铁、硝酸铁(所有试剂均为分析纯)。
显色剂的配制: 称取硫氰酸氨75g,置100ml 棕色容量瓶中,加水250ml溶解后家丙酮75ml,用水稀释至刻度,摇匀[2]。
NaFeEDTA对照品溶液的配置:精密称取NaFeEDTA对照品约200mg,置100ml 棕色容量瓶中,加水溶解并定容至刻度,摇匀。
稀盐酸配制:取盐酸500ml , 加水稀释至1000ml,摇匀。
1.2分析
1.2.1 标准曲线的绘制 精密量取NaFeEDTA对照品溶液0、1、2、3、4、5、
6ml分别置于50ml 容量瓶中,加75%的甲醇溶液定容,摇匀。精密量取稀释后的不同浓度的对照品溶液5ml 分别置于50ml容量瓶中,加水5.00ml ,加显色剂15ml ,用无水乙醇定容,摇匀,在λ=480nm处分别测定其吸光度A0,再分别精密测量取不同浓度标准品溶液5ml于50ml 容量瓶中,加稀盐酸5.00 ml ,加显色剂15ml,用无水乙醇定容,摇匀,在λ=480nm处分别测定其吸光度A,计算不同浓度ΔA=A- A0 ,以浓度C为横坐标,ΔA为纵坐标绘制标准曲线,结果如图(1):
线型范围为4~20μg/ml(以NaFeEDTA含量计),计算线性回归方程为:
ΔA=0.0349C ,相关系数为0.9999,线性关系良好。
1.2.2 样品测定 取铁强化酱油样品3.00ml置于50ml容量瓶中,加75%甲醇溶液定容,醇沉30min后过滤,取续滤液5.00ml两份,分别置于两个50ml 的容量瓶中,其中一个容量瓶中加水5.00ml 、过硫酸氨100mg ,显色剂硫氰酸氨15mg,加无水乙醇定容,摇匀后测定吸光度A样0 然后向另一个容量瓶中加稀盐酸5.00ml,过硫酸氨100mg,显色剂15ml,加无水乙醇定容后,摇匀,测定吸光度A样0 。计算ΔA=A样 - A样0 ,并与对照品ΔA对照 = A对照- A对照0 比较,C样=C对照* (ΔA样 /ΔA对照)即可得到样品中NaFeEDTA的含量。
2 结果与讨论
2.1 实验条件
2.1.1 测定波长的选择 将NaFeEDTA对照品配成浓度为15μg/ml的溶液,显色后,在400~600nm波长范围内扫描,如图(2):
实验结果表明,此红色络合物在λ=480nm处有最大的吸收,与潘教麦报道一致[3]
2.1.2 酸度对显色灵敏度的影响 由于NaFeEDTA只有在一定的酸性条件下才能离解出来Fe3+ 本方法采用盐酸(取盐酸50ml , 加水稀释至100ml)来调节酸度,并考察了加入不同量的盐酸对显色灵敏度的影响,结果如图(3):
根据图显示的实验结果,盐酸加入量应该大于4.00ml(pH≤0.5, 在此实验条件下,NaFeEDTA中的铁完全解离生成三价铁离子,本实验采用的盐酸加入量为5.00ml。
2.1.3 显色剂加入量考察
在样品测定条件下,显色前分别加入0、5、10、15、20ml显色剂,分别测定不同条件下ΔA,考察显色剂加入量对测定结果的影响。实验结果如图(4):
根据实验结果,本实验显色剂的加入量为15ml。
2.1.4 显色产物稳定性 在样品测定条件下,显色后分别放置不同的时间,测定其吸光度,通过实验发现,在室温下,红色络合物在30min内,吸光度值基本无变化,在实验室中我们还发现酸性条件下,当温度升高时,显色后生成的红色络合物红色褪去速度加快,灵敏度降低,所以,样品测定时温度不宜太高。
2.2 样品回收率
表1是用标准加入法对虎王牌酱油做的回收率实验,回收率在95.0%~110.0%之间,表明该方法测定结果可靠。
2.3 样品测定的重现性
精密量取虎王牌铁强化酱油6份,每份3ml,按照样品测定法测定ΔA 样
分别为0.450、0.458、0.455、0.452、0.449、0.454,平均值为0.453,RSD=0.8%,实验结果表明该方法的重现性良好。
表1:酱油中NaFeEDTA回收率测定结果
Table 1 NaFeEDTA recovery measurement in soy sauce
编号 标准加入量(mg/ml) 测定值(mg/ml) 回收率(%)
1 1.00 95.0 95.0
2 1.00 1.07 107.0
3 2.00 2.10 105.0
4 2.00 2.20 110.0
5 3.00 3.15 107.3
6 3.00 3.21 107.0
2.4 不同品种的铁强化酱油中NaFeEDTA的含量测定
用此方法对不同品种的铁强化酱油进行了测定,测定结果与添加量基本相符。测定结果见表2
表2:不同品种的铁强化酱油中NaFeEDTA的含量测定
Table 2 NaFeEDTA contents of different soy sauce samples
样品种类 NaFeEDTA加入量(mg/ml) 测定值(mg/ml)
珍极牌 2.00 1.95
海天牌 2.00 2.16
北康牌 2.00 1.88
和田宽 2.00 1.95
家乐牌 2.00 1.94
虎王牌 2.00 2.07
2.5 讨论
2.5.1 醇沉条件的考察 由于酱油本身的颜色太深,所以,样品测定前先醇沉。实验考察了甲醇浓度及醇沉时间对回收率的影响。实验结果见表3及表4。
表3:
用不同浓度的甲醇醇沉后样品中NaFeEDTA的回收率
Table 3 NaFeEDTA recovery after precipitation by different alcohol amounts
甲醇浓度(%) 酱油本底吸光度 样品回收率(%)
30 0.343 109.4
60 0.240 101.2
75 0.159 107.0
90 0.095 91.7
理论上在对样品进行醇沉时,甲醇浓度越大醇沉效果越好,但是,由于NaFeEDTA在甲醇中的溶解度低,所以,醇沉时水的比例不能太小,根据表3的实验结果可知,用75%的甲醇效果最佳。
根据表4的实验结果,我们将醇沉时间定为30min。
2.5.2 显色时溶剂的选择 由于样品显色后生成的红色络合物在丙酮、乙醇等有机溶剂中的稳定性好,灵敏度高,所以,选择在乙醇中显色[1]。
表 4 不同醇沉时间样品中NaFeEDTA 的回收率
Table 4 NaFeEDTA recovery in different precipitation times by alcohol treatment
醇沉时间(min) 30 60 120
样品回收率(%) 100.5 102.1 101.9
2.5.3 样品中NaFeEDTA 含量计算 在实验中 ,发现游离的铁离子,在中性和酸性条件下均可与硫氰酸氨生成红色络合物,而NaFeEDTA只有在酸性的条件下才可以与硫氰酸氨生成红色络合物[4],所以,在中性条件下可测定游离铁的含量,在酸性(pH≤0.5)条件下可测定总铁的含量,铁强化酱油中总铁的量减去游离铁的含量即为样品中的NaFeEDTA的含量。
[参考文献]:
[1]苗虹,于波,霍军生,等。食品添加剂NaFeEDTA测定方法研究。食品科学,2000,21(8):48-50
[2] 国家药典委员会. 中华人民共和国药典二部 . 北京: 化学工业出版社,2000,116-117
[3] 潘教麦, 陈亚森, 严恒太 . 显色剂及其在光度分析中的应用. 上海 : 上海科学技术出版社,1982,51-56
[4] 于如* . 分析化学. 北京: 人民卫生出版社, 1989,161-162
甘薯原料在工艺上的优点:在酒精生产中,甘薯原料的出酒率较高。其优点是:首先甘薯的淀粉纯度高(可用2%盐酸转化,测定其中所含淀粉,与用同样方法测定别的原料比较,甘薯的淀粉纯度高 )。其次是甘薯的结构松脆,易于蒸煮糊化,为以后的糖化发酵创造有利条件。
甘薯是高淀粉作物。在相同条件下,单位面积淀粉产量比水稻高30.1%,比玉米高30.6%,比小麦高48.9%。而且每生产500公斤甘薯淀粉所需要的投资比水稻少25%,比玉米少20%,生产加工淀粉的竞争优势很强。河北省卢龙县种植甘薯并加工淀粉,每亩纯收入1500元,收益是种植其它作物的3倍多。目前利用甘薯进行深加工最多的产品还有酒精、葡萄糖和柠檬酸等。甘薯原料需要量很大。