⑴ 数学解决问题的策略
在解题过程中,运用画图的方法,画出与题意相关的示意图,借助示意图来帮助推理、思考,这是小学数学解决问题中最常用的一种策略。
常见的画图方式有:线段图、集合图等。
将疑难问题的文字“翻译成图”,能够立竿见影地理清思路,找到解题策略。
例:某班有45位同学,其中有30人没有参加数学小组,有20人参加航模小组,有8小组都参加了。问:只参加一个小组的学生有多少人?
分析:画出集合图。
方框表示全班所有人。区域①表示只参加数学小组的同学。区域②表示只参加航模小组的人。区域③表示同时参加数学、航模两个小组的人。区域④表示两个小组都没有参加的人。
图片、图形转达信息的效率要远远高于文字和语言。
利用集合图将复杂的文字概念关系转化为直观的图,可以帮助孩子快速理清各种量之间的逻辑关系,提高解题效率。
转化策略
转化也是小学数学解决问题中常用的一种方法,能把较复杂的问题转化为简单问题,能把未知的问题变为已知的问题。
例:妈妈买了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的价格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:“每千克柑橘的价格是生梨的4倍”,这句话就是转化的条件。我们可以这样想:买1千克柑橘的价钱可以买4千克生梨,那么买2千克柑橘的价钱可以买2×4=8千克生梨。所以总共花了28.6元相当于买了(8+5)千克生梨所花的钱。通过转换,问题就得以解决了。
列表策略
列表策略,又叫列举策略。是将问题的条件信息用表格的形式列举出来,便于从中发现问题、分析数量关系,从而排除非数学信息的干扰,同时也便于找到解决问题的方法。
例:有1张五元纸币,2张两元纸币,8张1元纸币,要拿9元钱,有几种拿法?
⑵ 解决数学问题的常见方法与思路有哪些
一、用字母表示数的思想
这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.
四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
⑶ 怎样用数学方法解决数学问题
怎样用数学方法解决数学问题?
1. 首先,要弄清楚问题的本质和问题所包含的内容。看懂问题并分析出条件和约束;
2. 寻找适当的数学方法或已知的公式进行处理;
3. 根据数学方法及相应步骤进行解答:根据问题特征、条件及公式作出初始假设或者是寻找中间量等;
4. 依此逐步前进,将一个复杂的问题分解为一些小部分可以独立地考虑并求得原始数学方法最优解。