Ⅰ 分式计算的方法与技巧
分式计算的方法与技巧如下:
1、整体通分法
分析:当一个分式,后面是整式时,将后面的整式看作一个整体,来进行整体通分,可以简单求解。
2、逐项通分法
分析:通过观察各分母的特点,分母为整式时,想一想符合不符合乘法公式的运用特点,从左到右依次通分。
3、先约分,再通分
分析:当分子分母都是含有分母的整式时,想到能不能先约分,就要先将分子、分母先分解因式,能约分的先约分后,再根据题目的特点进项必要的变化后求值。
4、裂项相消法
分析:当两个分式的分母是两个因数的积,并且这两个因式相差1,而分子是一个还相同,这时就应该想到裂项法解题,就是将每一个分式拆成两项的差,前后抵消后再计算。
5、整体代入法
分析:先将条件进行整理,然后整体代入求代数式的值值。
6、公式法
分析:先将条件式进行变形,利用完全平方公式再对要求的式子进行整理,然后代入求值。
7、设辅助参数法
分析:利用条件式设一个辅助参数,将一些代数式用所设的参数表示,然后再将这些代数式代入到所求的式子中去,起到化简的目的。
8、倒数变换法
分析:当分子比较简单,分母比较复杂事时,这时可以想到把条件式整体取倒数,使条件变简单,再求值。
9、特殊值法
分析:由已知条件无法求出a、b、c的值,可根据已知条件取字母的一组特殊值,然后代入所求的式子求出结果。这种方法多用在填空题、选择题中。
Ⅱ 分式的简便运算
分式的运算
1、分式的乘除
分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.
用式子表示为:a/b·c/d=ac/bd
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
用式子表示为:a/b÷c/d=a/b·d/c=ad/bc
.
理解这两个法则,要注意如下几点:
①
分式的乘除运算归根到底是乘法运算,其实质是分式的约分;
②除式或被除式是整式时,可把它们看作是分母是1的分式,然后依照除法法则进行计算;
③对于分式的乘除运算,如果没有其他条件(如括号等),应按照由左到右的顺序进行计算,以免出现类似m÷n×1/n=m÷1=m这样的错误.为了避免这样的错误发生,先将除法转化为乘法后再计算;
④分式的运算结果一定要化为最简分式或整式.
2、分式的乘方
分式的乘方法则:分式乘方要把分子、分母分别乘方.
用式子表示为:(a/b)^n=a^n/b^n(n为正整数,b≠0).
理解这两个法则,要注意如下几点:
①分式乘方时,一定要把分式加上括号.
②分式本身的符号也要同时乘方;
③分式分子或分母是多项式时,要避免出现类似(a+b)^n/c^n=(a^n+b^n)/c^n这样的错误.
3、分式的加减
分式的加减法法则:
(1)同分母分式相加减,分母不变,把分子相加减;
(2)异分母分式相加减,先通分,变为同分母的分式,再加减.
理解这两个法则,要注意如下几点:
①“把分子相加减”就是把各个分式的“分子整体”
相加减,各分子都应加括号,特别是相减时,要避免出现符号错误;
②异分母分式相加减首先转化为同分母分式相加减,然后按照同分母分式加减法法则进
行计算.其转化的关键是通分;
③异分母分式的加减运算的一般步骤是:
i通分:将异分母分式化为同分母分式;
ii写成“分母不变,把分子相加减”的形式;
iii分子化简:分子去括号、合并同类项;iv约分:将结果化为最简分式或整式.
(3)求最简公分母的方法:
①将各分母分解因式;
②找各分母系数的最小公倍数;
③找出各分母中不同的因式,相同因式中取次数最高的.满足②③的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
4、分式的混合运算
分式的混合运算法则:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的.
在进行分式的混合运算过程中,要灵活运用交换律、结合律、分配律等.特别是分式的加减运算与加法的交换律、结合律相结合,会使运算过程简捷