Ⅰ 求十字相乘法的运算方法,和步骤,详细些
十字相乘法是一种适用于二次三项式类型题目的简便方法,它可以用来分解因式和解一元二次方程。
如x²-7x+6,将x²拆为x乘x,6拆成(-1)乘(-6),交叉相乘,-x与-6x,将两者相加,若等于-7x,那么,即可化简为(x-1)(x-6)。
十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
(1)十字相乘的解决方法扩展阅读
十字相乘法重难点
难点:灵活运用十字分解法分解因式。因为并不是所有二次多项式都可以用十字相乘法分解因式。
重点:正确地运用十字分解法把某些二次项系数不是1的二次三项式分解因式。
十字相乘法注意事项
第一点:用来解决两者之间的比例问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。