‘壹’ 小学数学中解决问题的策略有哪些
要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。
一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。
二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。
关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。
‘贰’ 小学数学解题方法
小学数学解题方法
引导语:下面我带大家来看看小学数学解题方法,希望能够帮助到大家,谢谢您的阅读的。
一、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?
对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。
例2:判断题:能被2除尽的数一定是偶数。
这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。
二、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
例3:计算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………运用乘法分配律
=59×50…………运用加法计算法则
=(60-1)×50…………运用数的组成规则
=60×50-1×50…………运用乘法分配律
=3000-50…………运用乘法计算法则
=2950…………运用减法计算法则
三、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
例4:填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。
这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。
例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?
这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。
找联系:每人种树棵数变化了,种树的总棵数也发生了变化。
找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。
四、分类法
根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。
分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
例6:自然数按约数的个数来分,可分成几类?
答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。
五、分析法
把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。
依据:总体都是由部分构成的。
思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。
也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。
例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?
思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉, 还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。
六、综合法
把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。
用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。
例8:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。
思路:11的倍数同时小于50的偶数有22和44。
两个数都是质数,而和是偶数,显然这两个质数中没有2。
和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?
和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?
这就是综合法的思路。
七、方程法
用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的`特点是把未知 数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。
例9:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。
例10:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?
这两题用方程解就比较容易。
八、参数法
用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。
例11:汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?
上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。
例12:一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?
其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。
九、排除法
排除对立的结果叫做排除法。
排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。
例13:为什么说除2外,所有质数都是奇数?
这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约 数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。
例14:判断题:(1)同一平面上两条直线不平行,就一定相交。(错)
(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)
十、特例法
对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。
例15:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。
可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。
例16:正方形的面积和边长成正比例吗?
如果正方形的边长为a,面积为s。那么,s:a=a(比值不定)
所以,正方形的面积和边长不成正比例。
十一、化归法
通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。
例17:某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?
这就需要在考虑问题时,把“总工作日”化归为“总工作量”。
例18:超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?
需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。
;‘叁’ 小学数学解决问题的四个步骤
解决问题三步骤的实施
(一)阅读与理解
1.找信息
找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。
2.提问题
提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。
3.示意图
示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。
(二)分析与解答
1.数量关系
心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。
数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。
2.列式计算
列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。
3.回顾与反思
回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。
总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。
‘肆’ 小学生解决问题的方法有哪些
1.归纳法。就是用联系、运动、发展变化的观点看待问题,把有待解决的问题,通过某种转化过程,归结为一类已经解决或容易解决的问题。其实质就是对问题进行变形,促使矛盾转化。例如:完全归纳法(数学归纳法)与不完全归纳法。
2.假设法。
就是先对题目中的已知条件或问题作出某种假设,然后,按照题中的已知条件进行推算,根据数量上出现矛盾,加在适当调整,最后找到正确答案的一种解题思想方法。如“鸡兔同笼”问题。
3.逆推法。采用与事情发生过程相反的顺序思考的解题方法做做逆推法。
4.列举筛选法。解某些数学题时,有时要根据题目的一部分条件,把可能的答案一一列举出来,然后根据另一部分条件检验,筛选出题目的答案。
5.图解法。解数学题时,可以设法把条件、问题以及它们的数量关系用线段图、韦恩图等图形反映上来,使我们能借助图形进行分析、推理,寻找解题途径,这种方法叫图解法。
6.类比法。
“类比”是根据两个或两类事物有些属性相同,推测它们另一些属性也可能相同的推理。在解题中,根据题中所求问题与已知条件相类似的关系,利用类比推理,找类比模型,从而寻找解题途径的方法叫类比法。
7.小学数学中常用逻辑推理法。
(1)分析与综合法
分析法是从需证的结论出发,以一系列已知定义、定理为依据逐步逆溯,从而达到已知条件的推理方法。特别是应用题,几何证明题等。
综合法是从题设条件出发,以一系列已知定义、定理为依据,逐步推演出所需证明的结论的推理方法。
(2)归纳与演绎法
归纳与演绎是相互联系着的,归纳得出的结论,可以用演绎法去验证,演绎的前提是通过归纳得出的。
由特殊性前提引出一般性结论的推理叫做归纳推理。以归纳推理为主要内容的科学研究方法叫做归纳法。
一般地,在小学数学课中,运算定律,基本性质,法则等都是运用不完全归纳让学生从头从一般原理到特殊事例的推理叫做演绎推理。以演绎推理的主要内容的科学研究方法叫演绎法。一般地,在小学数学教材中,当以归纳推理的形式得出运算定律,基本性质、法则、公式后,都再以演绎推理的形式进行计算。
如三段论(由大前提、小前提、结论构成)
(3) 观察与实验法
(4)联想法
(5)猜想法
(6)对应法。
‘伍’ 小学数学解决问题的策略有哪些
小学数学解决问题的策略有以下几个步骤:
1. 阅读理解题目
首先要仔细阅读题目,理解题意,找出问题的关键点和要求,确定所给的数据和需要求解的未知量。
2. 列出方程式
根据问题的描述和要求,列出方程式,尽量简化表达式,定义正确的符号,以便更好地表示关余老系。
3. 解方程式
使用基本的数学运算和计算技巧,解决方程式,逐步求解未知量,检查答案是否与判毁世问题所要求的一致。
4. 回答问题
将求得的解答应用到原题目上,判断结果是否符合要求,是否能够解释和说明问题的全部内容。
5. 检查掘肢结果
最后一步是检查答案是否正确,如果有时间,可以反复检查解答过程和结果,发现错误并改正,以确保结果正确。
这些策略在小学数学中是非常重要的,能够帮助学生系统性地解决数学问题。当学生掌握这些策略,并能够熟练运用时,就能够更自信地面对数学问题,并取得更好的成绩。
‘陆’ 小学解决问题的策略
小学解决问题的策略主要有:
画线段图、列表、替代、假设、转化、逆推。
‘柒’ 小学数学解决问题方法大全
小学数学解决问题的 方法 有哪些?解决问题需要注意什么问题?要抓住什么要点?下面是我为大家整理的关于小学数学解决问题 方法大全 ,希望对您有所帮助。欢迎大家阅读参考学习!
1小学数学解决问题方法大全
(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。
读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。
(2)把“大数”化“小”。
例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24 页,平均每天看8 页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。
(3)联系生活,想象情境。
让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。
(4)列表、画图。
表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。
2解决问题方法
(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。
(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。
(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。
(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。
(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。
3解决问题方法
1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。
2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的 创新思维 、求异思维。
4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。
4解决问题方法
(1)合理强化。
在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。
及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。
(2)分解强化。
为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。
(3)顺向加工策略。
顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。
(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式V = 13Sh ,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。
相关 文章 :
1. 小学数学解决问题策略
2. 小学数学教学方法有哪些问题
3. 小学数学的19种学习方法
4. 小学数学应用题解题方法
5. 小学数学学好的方法和技巧