导航:首页 > 解决方法 > 画图的策略解决问题的方法

画图的策略解决问题的方法

发布时间:2023-09-13 13:45:07

❶ 解决问题的策略与方法(急需)

1、画图的策略

根据孩子的年龄特点,他们对符号、运算性质的推理可能会发生一些困难,如果适时地让孩子们自己在纸上涂一涂、画一画,可以拓展学生解决问题的思路,帮助他们找到解决问题的关键。因为画图比较直观,通过画图能够把一些抽象的数学问题具体化,把一些复杂的问题简单化,从而有效地解决问题。

(1)、线段图。

线段图在解答分数问题时的作用是显而易见的,教过小学高年级数学的教师都对运用线段图来解答分数问题情有独钟,但线段图在解决其它类型的问题时同样也会发挥其直观、形象的作用。

(2)、连线图。

在解决诸如互相通电话、上下衣搭配、比赛场上有多少场比赛等问题时,运用连线的方法解答既直观又快捷还不容易出错,可以说是解答此类问题的最佳选择策略。

(3)、范围图

在解决长方形长不变,而宽减少,面积减少,求原长方形面积;长方形长增加或宽增加,面积增加,求原长方形面积;长方形长增加,宽增加,求增加面积。可以通过画范围图,就比较直观,不容易出错。

2、列表、尝试的策略。

在解决问题的过程当中,教师可以引导学生将问题的条件信息用表格的形式把它列举出来,起到事半功倍的效果。如在解决诸如租船、租车、购票或得分问题以及解决比较困难的鸡兔同笼问题时经常用到。

3、借助手来学习的策略。

每个人都有两只手,10个手指头,5个手指4个空(间隔),10个手指就有9个间隔,首先使学生明确手指数与间隔数的关系,明确了这两者之间的关系后,就可以用手来解决植树、锯木头、上楼梯、钟打点等问题。例如:小红家住5楼,每层楼之间有20个台阶,从1楼到5楼要走多少个台阶?手一伸,5个手指代表5层楼,共4个间隔,4×20=80个台阶,就不会出现5×20=100个台阶的错误了。用手来帮我们解决问题的策略可以说是简便易行,应用广泛。

4、模拟操作策略。

模拟操作是通过探索性的动手操作活动,来模拟问题情境,从而获得问题解决的一种策略。学生是通过自己探索的过程,将需要解决的问题,转化为一个已知的问题来进行推导性的研究。通过这种开发性的操作的策略的训练,不仅能够使学生获得问题的解决,而且在这个过程当中,也能培养学生的创造性思维。

5、推理的策略。

除了以上介绍的这些策略外,我们以前经常用到的从问题出发思考问题(可称作逆推的策略),从条件出发思考问题(可称作顺推的策略)既是过去我们经常用到的“分析法”和“综合法”,这些方法都可以看作推理的策略。

事实上,当一个数学问题呈现在面前时,其思维的触须是多端的。以上所述的几种问题解决的策略只是平时常用的导引途径,为了能够更有效地提高数学问题解决的能力,教师还要引导学生在数学问题解决的实践中注意不断思索探求、逐步积累解题经验,以掌握更多、更具体的解题方法和思维策略。

教案版

❷ 画图解决的问题有哪些

借助画图解题,是孩子打开解决问题大门的一把“金钥匙”,其实很多问题都可以很快速的求解,比如几何问题、路程问题,如果光靠想是很难想出答案的,画图就一目了然,下面整理小学数学6类画图解答题,快为孩子收藏吧。

平面图

对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。

例1:

有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。

根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。如图(1)所示。

根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。从图中不难找出:

原长方形的长(A)是120÷12=10

原长方形的宽(B)是72÷12=6

则两数的积为10×6=60

借助长方形图,弄清了题中的条件,找到了解题的关键。

例2:

一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为6O平方厘米的平行四边形。求原来梯形面积是多少平方厘米?

根据题意画平面图:

从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=O.5倍。所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=5O(平方厘米)。

立体图

一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。

例1:

把一个正方体切成两个长方体,表面积就增加了8平方米。原来正方体的表面积是多少平方米?

如果只凭想象,做起来比较困难。按照题意画图,可以帮助我们思考,找出解决问题的方法来。按题意画立体图:

从图中不难看出,表面积增加了8平方米,实际上是增加 2个正方形的面,每个面的面积是8÷2=4(平方米)。原正方体是6个面,即表面积为4×6=24(平方米)。

例2:

用3个长3厘米、宽2厘米、高1厘米的长方体,拼成一个大长方体。这个大长方体的表面积是多少?

按题意画立体图来表示,三个长方体拼成的大长方体有以下三种

(1)拼成长方体的长是2×3=

❸ 数学画图技巧

数学学习,学会画图是最基本的数学技能,也是一种解决问题的策略。数学图形的优点就是:直观形象、化繁为简,通过画图可以将许多抽象的数学概念、算理、数量关系进行形象化、简单化,给人以直觉的启示。下面我们来介绍5种最基本的画图方法:

运用画图策略解决问题,将问题中提到的图形画出来,可以弥补我们想象力的不足,使问题更加清晰、直观、明了、容易理解与解答。有些学生想不到如何运用画图去分析解决问题,除非使在教师的点醒下才会去画图解决问题,说明没有把画图当成一种解决问题的手段,更不用说运用数形结合的思想。如最简单画图就是添加辅助线,将不懂或难以厘清的问题,通过画图来帮助学生理解题意、理清思路。

尺规作图能提高学生的几何语言表达能力,通过画图,培养学生的作图能力及动手能力,同时让学生在数学学习过程中体验数学语言的简洁严谨,体会数学作图语言和图形的统一。

❹ 如何培养学生应用画图策略解决数学问题

一、培养学生画图策略的必要性
在《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)提出的课程目标中,把解决问题作为重要的课程目标,并指出:要使学生面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。画图策略是众多的解题策略中最基本的、也是一个很重要的策略。它是通过各种图形帮助学生把抽象问题具体化、直观化,从而使学生能从图中理解题意和分析数量关系,搜寻到解决问题的突破口,从而形成解题的思路。因此,人们在解决问题时喜欢使用画图策略。为什么需要画图?怎样让学生学会画图?不是把现成的图画好展现给学生看,也不是直接告诉他们怎样画,而是让学生在思考的过程中产生画图的需要,在自己画图的活动中体会方法、感悟策略、发展思维、获得思想。贯穿在学习过程始终的应该是——引导学生走上数学思维之旅。从这个意义上讲,画图能力的强弱也反映了解题能力、思维能力的高低。所以在解决问题的教学过程中,注意培养学生运用画图策略分析解决问题的能力是非常必要的。
二、对于如何在教学中培养学生的画图策略的一点拙见
1. 帮助学生不断体会画图策略的价值和作用
对于画图策略的体会,应从低到高逐步渗透。初始阶段低年级孩子对抽象的数量关系的理解存在着一定困难。如果适时的让孩子们自己在纸上涂一涂、画一画,可以帮助学生分析理解抽象的数量关系,从而找到解决问题的方法。因此在低年级教学中教师就应有意识的教给学生借助图来分析理解数量关系。
例如:比多少应用题一直是学生学习的一个难点,学生对谁和谁比,谁多谁少,总是分不清,造成见多就加,见少就减的错误逻辑。如果从一开始教学时,教师就教给学生借助画图来分析数量关系(当然这时的图应以实物图为主),教学效果就会大大提高。
2. 鼓励学生运用多种图的形式分析和解决问题
在传统的应用题教学中,提到画图教师们想得更多的是线段图,而且那时的线段图在画法上也有明确的要求,如:单位“1”要标在图的上面,画图必须准确,要用直尺等,可以说传统的教学更多的是把画图作为一个知识教给学生,而不是把它看成帮助学生解决问题的一个策略来进行教学,所以学生不愿意按照老师的要求来画图。新教材把画图作为一种策略来教给学生,而且画图的形式也不只限于线段图,学生可以根据自己的需要画出不同的图来帮助自己分析、理解数量关系,解决实际问题。因此教师应鼓励学生运用多种图的形式分析和解决问题。在这个过程中要遵循这样一个原则,即能把数量关系最清晰、最直接地显示出来的图形,是我们最佳的选择。学生也正是在教师的不断鼓励和尊重中大胆的提出自己的不同见解,运用更多的图来帮助自己分析和解决问题。
3. 抓住培养学生画图策略的重要内容
教学要真正做到培养学生运用画图策略解决问题的能力,不是在加深问题的难度上下功夫,而是要通过有代表性的又为学生容易接受的题目,着重培养学生的画图策略,使学生能够产生迁移,这样即使遇到一些未解过的题目,学生经过自己的画图、分析也能找出解答的方法。例如,比多少、倍的认识、有余数除法、行程问题、分百应用题,以及搭配、鸡兔同笼、植树等一些特殊问题都是培养学生画图策略的重要内容。
4. 重视对解题策略的指导,将“隐性”的策略“显性化”
在以往的应用题教学中教师更多地注重知识教学和问题本身的解决,而不重视对解题策略的总结和归纳,教学中要重视对学生解决问题策略的指导,将“隐性”的解决问题的策略“显性化”。这样有助于学生体会到策略在解决问题中的价值,提高学生解决问题的能力。例如,在具体求解问题前,教师可以鼓励学生思考需要运用哪些解决问题的策略;在解决问题的过程中,教师可以根据具体情况,适时使学生注意是否要调整解决问题的策略;在解决问题之后,教师要鼓励学生反思自己所使用的策略,并组织交流。在适当时候,教师可以总结一些解决问题的策略,让学生收集使用这些策略的典型实例。总之,教师要将解决问题的策略作为重要的目标,有意识地加以指导和教学。
在实际教学中,要帮助学生掌握用画图策略解决问题的过程,促进学生体验出画图策略的作用。可以这样指导:
a、读题:要求学生熟读题目,明确题目中的条件和问题;
b、画图:启发学生根据题里的条件和问题,画出相应的图形;
c、显示:直观显示问题的信息,便于学生分析和思考(可在图中标出条件和问题);
d、分析:在画图后,引导学生借助直观图形进行分析,思考先要求什么,找出解决问题的方法;
e、解答:确定解题过程要先算什么再算什么,自己解决问题,完成解答。
学生通过运用画图策略解决问题,就能体验画图策略的有效性,感受直观图形对于解题的作用,形成应用画图策略的兴趣和自觉性。此外,教师在指导学生运用画图策略解决问题的过程中,还应注重不同阶段对画图策略的渗透、总结和整理。如低年级可从实际演示、操作活动中渗透画图策略;中、高年级可从模拟演示、画图示意及抽象的线段图中体现画图策略。整体把握画图策略,系统地进行指导教学。
5. 画图策略与其他策略的联系
“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神”是《数学课程标准》确定的课程目标之一。
学生有着不同的知识背景和思考角度,他们的差异是客观存在的,对同一个问题,由于学生的认知水平和认知风格的不同,常常会出现不同的解题方法,这正是学生具有不同个性的体现。教学中,教师应鼓励学生用已有的经验大胆思维,经历数学知识的探索过程,寻求解决问题的途径。画图策略固然是一种很重要的解题策略,但在解决实际问题中要灵活应用,有时需要与其它策略相结合,才能充分发挥其作用,达到提高学生解决问题能力的效果。
例如:有这样一道相遇问题的题目:小平和小红同时从A地B地,小平每分钟比小红多走20米。30分钟后小平到B地,然后立即原路返回,在离B地350米处遇到小红。小红每分钟走多少米 ?为了让学生理解题意,可以让学生进行模拟表演,并记住演示的情况,以便作图解答。模拟表演在同学们的不断的纠正中越来越到位,说明学生对题目里所讲的事的认识也越来越清晰。在此基础上再用线段图将所模拟的情境画下来,这样题目里的数量关系也会一目了然,学生分析起来当然就容易多了。
6. 注重画图策略教学中数学思想的渗透
小学数学基本思想是指:渗透在小学数学知识与方法具有普遍而强有力适应性的本质思想。就其具体内容而言,可以分为转换思想、对应思想、归纳思想、化归思想、类比思想等,这些思想是整个小学数学的基石,也是数学通向科学殿堂的桥梁。因此教师在培养学生利用画图策略解决实际问题的过程中应有意识的渗透数学思想,从而来培养和发展学生的数学能力。
(1) 数形结合的思想
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题和解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
(2) 对应的思想
解答分数应用题采取对应的思想方法是一种极为重要的解题方法。分数应用题的对应关系是指量与率的对应关系。简单的分数应用题、量与率直接对应,在复杂的应用题中,量与率的对应关系是间接的,这种间接的对应关系,有时“量”是隐蔽条件,有时“率”是隐蔽条件,也有时“量”与“率”都是隐蔽条件。因此解题方法的形成,就建立在清晰、明确的量与率对应的前提下,这是解答较复杂分数应用题的重要环节。而画图策略在帮助我们明确对应关系中发挥了重要的作用。
(3) 转化的思想
转化思想是数学的基本思想之一,我们在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
有些应用题,按原题的条件,数量关系解答起来比较复杂,如果根据知识之间的内在联系,变换一种方式去思考,恰当地运用直观图形转化题中的数量关系,把原来的问题转化为另一种容易解决的问题,从而打开解题思路,顺利解决问题。例如:条件的转化,单位“1”的转化、行程问题、分数问题与比例应用题之间的转化等等。
在运用画图策略解决问题的过程中,除了渗透上述数学思想方法外,还可以适时渗透假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。在教学中渗透和运用这些教学思想方法,不仅可以增强学习的趣味性,调动学生学习的主动性,还可以发展学生思维的灵活性和数学智能,有助于学生数学素养的全面提升。
当然,教师如何整体把握教材中的画图策略,逐步将策略显性化,使学生在解决实际问题的过程中能够自觉地运用画图的策略,还有待于进一步深入研究。但最终,我想应该向大会结束时徐老师总结的那样:只有学生困惑,产生需求,在探索和启发下,自己体验、提炼出解决问题的策略才是根本,才达到学习的内化,才是我们教师的成功!

❺ 常见的解决问题的策略有什么

常见的解决问题的策略有:1、画图的策略。2、推理的策略。3、尝试调整的策略。4、模拟操作的策略。
解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。在解决问题时,要重视渗透解决问题的策略,进而逐步提升解决问题的能力。
1、画图的策略:由于小学生认知水平的局限,学生对符号、运算性质的推理可能会发生困难,在解决问题时,引导学生自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。
2、推理的策略:推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。
3、尝试调整的策略:尝试的策略,简单地说就是不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。
4、模拟操作的策略:模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

❻ 用画图可以简便解决的解决问题

用划口口一简便解决的解决问题都换了门,这个气氛带销售都是比较简单的。又没见过问你同有

❼ 常用的解决问题的策略有哪些

解决问题策略的学习,和解决问题的学习是统一的。在小学数学学习中,往往通过例题的学习来使学生掌握解决问题的策略,又通过练习题的应用,使学生掌握解决问题的策略。可以说解决问题的策略是数学例题学习的核心,作为一名教师要知道小学数学中常用的解决问题的策略有哪些?下面尝试列举一二。

模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。

当然,解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。我们在解决问题时,要重视渗透解决问题的策略,进而逐步提升学生解决问题的能力。

阅读全文

与画图的策略解决问题的方法相关的资料

热点内容
鞋的裁剪方法图片 浏览:238
快递盒子正确处理方法 浏览:936
研制东西时的设计方法有哪些 浏览:648
构造哈希表最常用的方法 浏览:296
紫金红葫芦的鉴别方法 浏览:615
二灰稳定砂砾压实度检测方法 浏览:71
万用表测针脚电压方法和步骤 浏览:338
物理学研究中最常用的方法 浏览:554
喝醉酒肚子疼怎么办最快的方法 浏览:456
小孩有哪些简单学习方法 浏览:89
治疗热感冒最好方法 浏览:165
岁月催白发的最佳方法 浏览:200
怎么写水饺的材料和制作方法 浏览:682
外墙面积计算方法 浏览:400
atom2手机稳定器使用方法 浏览:478
有哪些治疗噪声的方法 浏览:44
在实验中应用了什么物理研究方法 浏览:668
乙状结肠冗长有哪些诊断方法 浏览:532
工程数学计算方法 浏览:110
平板电脑office365永久激活方法 浏览:353