① 解一元二次不等式的一般步骤5个
解一元二次不等式步骤一般有四个:
1、把二次项系数变成正的;
2、画数轴,在数轴上从小到大依次标出所有根;
3、从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);
4、注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
(1)解二次不等式简单方法扩展阅读
数轴穿根法适用于所有的不等式。
用根穿孔法求解高阶不等式时,先将不等式的一端化为零,然后在另一端分解,得到其零点。这些零点标记在数字轴上,然后使用平滑曲线从X轴右端的顶部穿过这些零点。
大于零的不等式解对应于x轴上曲线上部实数x的一组小于零的值。相反地。这种方法被称为序贯轴根部穿孔法,也被称为“根部穿孔法”。口诀是“从右到左,从上到下,奇穿偶不穿。”
② 二次不等式怎么解
概念含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。
一元二次不等式的解法 1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
还是举个例子吧。
2x^2-7x+6<0
利用十字相乘法
2 -3
1 -2
得(2x-3)(x-2)<0
然后,分两种情况讨论:
一、2x-3<0,x-2>0
得x<1.5且x>2。不成立
二、2x-3>0,x-2<0
得x>1.5且x<2。
得最后不等式的解集为:1.5<x<2。
另外,你也可以用配方法解二次不等式:
2x^2-7x+6
=2(x^2-3.5x)+6
=2(x^2-3.5x+3.0625-3.0625)+6
=2(x^2-3.5x+3.0625)-6.125+6
=2(x-1.75)^2-0.125<0
2(x-1.75)^2<0.125
(x-1.75)^2<0.0625
两边开平方,得
x-1.75<0.25且x-1.75>-0.25
x<2且x>1.5
得不等式的解集为1.5<x<2
另外,再介绍二种方法
第一种方法:
将该二次不等式转化为二次函数
如x^2-3x+1>0
将其转化为y=x^2-3x+1
然后作出它的图像
观察图像当y值大于0是x的取值,就是该二次不等式的解
第二种方法:
令该二次不等式右边为0
如:x^2-3x+1>0
令x^2-3x+1=0
然后将此二次方程分解因式
转化成(a+b)*(c+d)=0的形式
这是带入原不等式
如当(a+b)*(c+d)>0时
选取两项都大于0或都小于0分别求解
也可解出答案
图不好画,只能这样讲解了,不知道能不能明白