① 用方程解决问题的一般步骤
列方程解决问题的一般步骤: (1)弄清题意,设未知数,一般用x表示;
(2)找出题中数量间的相等关系,列出包含x的等式;
(3)解方程;
(4)检验,写出答案.
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
② 解方程应用题的步骤
列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组, 从而解决问题。
列方程解应用题的一般步骤(解题思路)
(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设——设出未知数:根据提问,巧设未知数.
(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)
【典型例题】
例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?
解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.
设甲乙合作的时间是x分钟,
【方法突破】
工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:
工作总量=工作效率×工作时间
例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是
例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?
因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.
【解析】
设胜了x场,那么负了(11-x)场.
2x+1•(11-x)=18
x=7
11-7=4
那么这个班的胜负场数应分别是7和4.
【方法突破】
比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:
每队的胜场数+负场数+平场数=这个队比赛场次;
得分总数+失分总数=总积分;
失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。