‘壹’ 求最小公倍数的简便方法
求最小公倍数的简便方法是短除法和辗转相除法。
方法二:辗转相除法
当两个数的共有质因数不好找时,短除法就不太好用了。
比如:1971,2263两数。
求最大公因数方法 → (大数,小数)
① 大数÷小数 → 余数A;
② 小数÷余数A → 余数B;
③ A÷余数B → 余数C;
不停循环,直到余数为0为止。此时的除数就是最大公因数。
再利用短除法即可求出两数最小公倍数。
‘贰’ 怎么简单找到两个数的最小公倍数
如果大数是小数的整倍数,最小公倍数就是大数;如果大数不是小数的整倍数,将两个数分别分解因数,标记公共的因数,把两个数的因数相乘,公共的因数只乘一次,就可以了.
例如:
6和36,36是6的整倍数,两个数的最小公倍数是36.
12和18
12=6×2 18=6×3 有公共的因数6
将两个数的因数相乘,6×2×6×3,公共的因数是6,只计算一次,划掉一个6,变成6×2×3=36 .最小公倍数是36.
(2)哪种方法找最小公倍数简单准确扩展阅读:
1.列举倍数法
列举倍数法(定义求法)就是分别列举出要求最小公倍数的那几个数的一些倍数,从中找出除“0”以外最小的那个公倍数,就是最小公倍数。
如:求6和9的最小公倍数。
解:6的倍数有:6,12,18,24,30,36,42……
9的倍数有:9,18,27,36,45……
从上面可以看出6和8的最小公倍数是18。
2.分解质因数法
分解质因数法就是先把要求最小公倍数的那几个数分别分解质因数,然后将原来几个数里所含该质因数的最多个数的每一个质因数相乘,所得的积就是要求的最小公倍数。
如:求60、42的最小公倍数。
解:60=2×2×3×5 42=2×3×7
60和42的最小公倍数=2×3×2×5×7=420 。
这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。
3.短除法
用短除法求两个数的最小公倍数,一般都用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。把所有的除数和最后的两个商连乘起来,就得到这两个数的最小公倍数。
如:求16、28的最小公倍数。
[16、28]=2×2×4×2×7=112。
4.公式法
所谓公式法(最大公约数与最小公倍数关系)就是对于任意两个自然数a、b,只要先求出这两个数的最大公约数后,利用公式[a,b] ×(a,b)=a×b即可求出最小公倍数[a,b]=a×b÷(a,b),也即是两个数的最小公倍数等于这两个数的乘积除以这两个数的最大公约数。
如:求[105,42] 。
解:∵(105,42)=21,
∴[105,42]=105×42÷21=210。
特例:如两个数互质,则这两个数的最小公倍数就是这两个数的乘积。
5.辗转相减后相乘法
求两个数的最小公倍数,如两个数相差2倍以内,就可用辗转相减后相乘法,即连续用大数去减小数,直到所得的差能同时整除原来两个数为止,然后用这个差与整除的两个商相乘,所得的乘积就是两个数的最小公倍数。
如:求[42,30]。
解:∵42-30=12(12+42,12+30),继续往下减
30-12=18(18+42,18+30),继续往下减
18-12=6(6│42,6│30),减到此为止
6.大数翻倍法
所谓大数翻倍法就是要求两个数的最小公倍数,可以将大数从两倍找起,直到找出的数是小数的倍数(即出现新的倍数关系为止),这个倍数就是这两个数的最小公倍数。
如:求6和15,14和20的最小公倍数。
解:15的倍数有30,因为30是6的倍数,所以30是6和15的最小公倍数,即[6,15]=30。又因为20的倍数有40,60,80,100,120,140,由于140是14的倍数,所以140是14和20的最小公倍数,即[14,20]=140。
特例:如果大数本身就是小数的倍数,则这两个数的最小公倍数就是大数。
7.小数缩倍后相乘法
小数缩倍后相乘法就是求两个数的最小公倍数。如果这两个数不成倍数关系,就把小数依次除以2,3,4,5……直到除得的商能整除较大数为止,然后用这个商除以较大数所得的商与原来小数相乘所得的积就是这两个数的最小公倍数。
如:求[10,75]和[25,30]。
解:①因为小数10能被2整除,商是5,而且75÷5=15(整除),所以[10,75]=15×10=150。
②因为小数25能被5整除,商是5,且30÷5=6,所以[25,30]=6×25=150。
8.肉眼判断法
(1)如果a.b是互质数,那么a.b的最小公倍数是a×b。
如:求4和5的最小公倍数。
4和5是互质数,那么4和5的最小公倍数是4×5=20 。
(2)如果两个数中,较大的数是较小数的倍数,那么较大的数是这两个数的最小公倍数。
如:求16和8的最小公倍数。
16是8的倍数,那么16就是16和8的最小公倍数。