① 数学动点问题解题技巧是什么(初一)
解决动点问题首先要做到仔细理解题意,弄清运动的整个过程和图形的变化,然后再根据运动过程展开分类讨论画出图形,最后针对不同情况寻找等量关系列方程求解。
而对于建立在数轴上的动点问题来说,由于数轴本身的特点,这类问题常有两种不同的解题思路。
一种是根据“形”的关系来分析寻找等量关系,也就是利用各线段之间的数量关系列方程求解。
另一种是从“数”的方面寻找等量关系,就是利用各点在数轴上表示的数之间存在的内在关系列方程。
简介
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
1、集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
2、函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
3、方程与不等式:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
② 解答中考数学动点题的技巧
动态几何问题已经成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。
今天王老师以下面这些题型为例,谈谈此类问题的思路突破与解题反思,希望能帮助同学们提高数学成绩。
专题一
建立动点问题函数解析式
函数揭示了运动变化过程中量与量之间的变化规律是初中数学的重要内容。
动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。
那么我们怎样建立这种函数解析式呢?下面王老师结合中考试题给大家举例分析。
Part 1
应用勾股定理建立函数解析式
③ 初一动点问题的方法归纳有哪些
初一动点问题的方法归纳如下:
1、数轴上两点之间的距离可用绝对值来表示,即两点所表示的数差的绝对值。
2、数轴上一个动点字母表示用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。
3、求数轴上任意两点间的线段的中点,用两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2。
4、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。
5、数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。