‘壹’ 磷酸根离子的检验方法有哪些
“
随着环保意识的加强,近两年各地各行业纷纷重视磷污染问题,磷酸盐怎么检测?怎么知道它超标呢?超标多少也不知道呀?下面是常见的磷酸盐检测方法有3种,滴定法、分光分度法、快速测试包法。
福克斯 运动从此更智能
广告
福克斯 运动从此更智能
”
一、滴定法
Th(IV)盐与磷酸盐在PH2~3时能定量生产沉淀及EDTA又能与Th(IV)生成稳定络合物的性质建立了Th沉淀-EDTA滴定法测定污水磷含量。
优点:此法可非常精准测试磷含量,区别于仪器分析的办法因为磷含量比较高超出测定范围,需要多次吸收进行检测引起实验误差。
缺点:比较繁琐,为传统的化学法滴定,耗时耗力,不符合现在科技需求。
二、分光光度法
分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光线透过测试的样品后,部分光线被吸收,计算样品的吸光值,从而转化成样品的浓度。
分光光度法测定磷含量是利用钼蓝法,钼蓝法一般分为氯化亚锡法和抗坏血酸法2种。氯化亚锡法颜色稳定时间比较段,一般几分钟且容易收铁离子的干扰。抗坏血酸钼蓝法具有颜色稳定时间长,铁离子干扰小等优点是最受欢迎的。
优点:精准度也比较高,操作相对滴定法要方便省时很多。
缺点:需要花费几千到几万的费用购买仪器设备。
三、快速测试包法
快速测试包法也是利用钼蓝法,不需要仪器设备,只需要一量个小管和试剂即可快速测试出磷含量,通俗理解就是配备比色卡肉眼比色看浓度范围。
优点:便宜,只需要几百块可以检测几十次、快速,只需要5分钟可以出结果且轻巧方便。
缺点:不够精准,只可估算个大范围值。
‘贰’ 果蔬 抗坏血酸 检测
中华人民共和国国家标准
乙醚萃取法
GB 12143.3-89
Determination method for L-ascorbic acid in fruit and vegetable juice beverages- Ethyl ether extraction method
1 主题内容与适用范围
本标准规定了使用2,6-二氯靛酚滴定-乙醚萃取法测定果蔬汁饮料中L-抗坏血到含量的方法。
本标准适用于浓缩果蔬汁、果蔬原汁、果蔬汁饮料、果蔬汁碳酸饮料及果蔬汁固体饮料中L-抗坏血酸的测定,尤其适用于深色果蔬汁饮料中L-抗坏血酸的测定。但不适用于脱氢抗坏血酸的测定。
2 引用标准
GB 601 化学试剂 标准溶液制备方法
GB 686 化学试剂 丙酮 HG 3-1002 化学试剂 乙醚
3 原理 本法根据氧化还原反应原理,2,6-二氯靛酚能被L-抗坏血酸还原为无色体,微过量的2,6-二氯靛酚用乙醚提取,然后由醚层中的玫瑰红色来确定滴定终点。
4 试剂 所用的试剂均为分析纯,所用的水均为蒸馏水或同等纯度的水(以下简称水)。
4.1 丙酮:符合 GB 686.
4.2 乙醚:符合HG 3-1002.
4.3 10%硫酸铜溶液:称取10g硫酸铜(CuSO4·5H2O)溶解于水,并稀释至100ml.
4.4 2%草酸溶液:称取20g草酸(C2H2O4·2H2O)溶解于水,并稀释至1L. 1
4.5 0.1 mol/L(——I2)碘标准滴定溶液:按GB 601 第2章第10条配制与标定,贮存 2于棕色瓶中。 1 1
4.6 0.01 mol/L(—I2)碘标准滴定溶液:将0.1mol/L(—I2)碘标准滴定溶液在使用时 2 2 稀释V25mL→V250mL,浓度以C1表示。
4.7 0.88mg/mL抗坏血酸标准溶液:称取0.22g抗坏血酸,用2%草酸溶液(4.4)溶解并稀释到250mL。 标定:吸取抗坏血酸标准溶液20.00mL,加0.5%淀粉指示液(4.10)1mL,用0.01 mol/L( 1 —I2)(4.6)碘标准滴定溶液滴定至呈微蓝色为止。
2 C1·V1
C2 = —————-×88 ……………………………………(1)
20
式中:C2--L-抗坏血酸溶液的浓度,mg/mL;
C1--碘标准滴定溶液的浓度,mol/L;
V1--标定时所用碘标准滴定溶液的体积,ml;
1 88--1 mL 1 mol/L(———I2)碘标准滴定溶液相当于L-抗坏血酸的毫克数。 2
4.8 0.088 mg/ML L-抗坏血酸标准溶液:吸取0.88 mg/mL L-抗坏血酸标准溶液(4.7) 25.00mL,用2%草酸溶液稀释,V25mL→V250mL.注:4.7和4.8的L-抗坏血酸溶液在使用时配制。
4.9 2-6-二氯靛酚标准滴定溶液:称取200mg,2,6-二氯靛酚,用少量热的重蒸馏水湿润,然后再慢慢加入热的重蒸水,搅拌溶解,过滤。冷却后,滤液用重蒸馏水稀释到1L.保 存于冰箱中。一星期至少标定一次。标定:吸取10.00mL L-抗坏血酸标准溶液(4.8)置于50mL比色管中,按测定样品的步 骤标定2.6-二氯靛酚溶液的滴定度。
m
F = —— …………………………………………(2)
V
式中:F--2,6-二氯靛酚溶液的滴定度,即 1 mL 2,6-二氯靛酚溶液相当于L-抗坏血酸的毫克数,mg/mL;
m--10 mL
L-抗坏血酸标准溶液中含抗坏血酸的量,mg;
V--标定时所用2.6-二氯靛酚溶液的体积,mL.
4.10 5g/L淀粉指示液:称取0.5g可溶性淀粉,用5mL冷水调匀,将所得乳浊液在搅拌下徐徐注入100 mL沸腾着的水中,再煮沸2~3min,使溶液透明。加0.1g碘化汞作保存剂。
5 仪器 实验室常用仪器及下列各项:
5.1 10 mL微量滴定管。
5.2 50 mL 100mL比色管。
5.3 125 mL分液漏斗。
6 试液的制备 水果、蔬菜中抗坏血酸的含量见附录 A。
6.1 浓缩汁 在浓缩汁中加入与在浓缩过程中失去的天然水分等量的水,使成为原汁。然后同原汁 一一样取一定量样品,稀释、混匀供测。
6.2 原汁 称取含抗坏血酸4~10 mg有代表性的样品(精确到0.001g),用2%草酸溶液稀释到200 mL,混匀供测。
6.3 果汁饮料、果蔬汁水
6.3.1 抗坏血酸含量在0.05mg/mL以下的样品,混匀后直接取样测定。
6.3.2 抗坏血酸含量在0.05mg/mL以上的样品,称取含抗坏血到4~10mg有代表性的样品(精确到0.001g),用2%草酸溶液稀释到200mL,混匀供测。
6.4 果蔬汁碳酸饮料 先将样品旋摇到基本无气泡后,按6.3条制备。
6.5 固体饮料 称取含抗坏血酸4~10mg有代表性的样品(精确到0.001g),用2%草酸溶液溶解并稀释 至200mL,混匀供测。
6.6 乙醚抽提处理 对于高度乳化或样液色泽较深且易被乙醚抽提的样品,取样后置分液漏斗中。加30mL乙醚,充分振摇但勿使之乳化。待分层后将下层样液放入200mL容量瓶中,分液漏斗中加入 20mL2%草酸溶液。适当振摇,待分层后,将下层水溶液放入上面的200mL容量瓶中。如此反复操作4次,将每次的下层水溶液均放入200mL容量瓶内,然后用2%草酸溶液稀释至刻度
6.7 空白试液的制备 按试液制备中所确定的取样量称取同一样品(精确到0.001g),置于250mL锥形瓶中,加 20mL10%硫酸铜溶液,加水使总体积约为100mL,置于垫有石棉网的电炉上,小心加热至沸并 保持微沸15min,然后用流动水冷却到室温。将此溶液转移到200mL容量瓶中,用水稀释至刻度,摇匀,供空白测定。
7 分析步骤
7.1 试液的制定 取10~15支50mL比色管,在每支比色管中加入10.00mL按第6章制备好的试液,各加2. 5mL丙酮。放置3min后,在第一支比色管中加入1 mL2,6-二氯靛酚溶液,充分混匀,精确控制40s后,加入2 mL乙醚,充分振摇,放置几分钟,待乙醚与水溶液分层后,观察醚层有无 出现玫瑰红色。当出现淡玫瑰红色时,则表明已达到测定的暂定终点。如果2,6-二氯靛酚 全部被抗坏血酸还原,乙醚层保持无色,则在第二支比色管中加入1.5mL 2,6-二氯靛酚溶 液。如还不显红色,再逐一按2.0、2.5、3.0、3.5、4.0、4.5、5.0mL的量加入2,6-二氯靛 酚溶液,直到乙醚层出现玫瑰红色达到暂定终点为止。这时所加的2,6-二氯靛酚的量常常 是过量的,所以需进一步试验,确定精确的终点。如果加到3.0mL2,6-二氯靛酚溶液时出现玫瑰红色,则从第六支加有试液的比色管中开始分别加入2.6、2.7、2.8、2.9mL 2,6-二氯靛酚溶液,直至呈现淡玫瑰红色为止。如在2.9mL刚呈红色,则2.9mL为精确终点。如加到2.9mL 2,6-二氯靛酚溶液仍不显玫瑰红色,则上面的3.0mL就是精确终点。所用2,6-二氯靛酚溶液为α毫升。对于抗坏血酸含量低于2mg/100g的样品,用100mL比色管直接加倍取样测定。丙酮与乙醚的加量也相应加倍,操作同上。对于同一个被测样液需平行测定三次。
7.2 空白试液的测定 吸取空白试液10.00mL于比色管中,同7.1加丙酮并逐一按0.05、0.10、0.15、0.20mL 的量加入2,6-二氯靛酚溶液,测得在乙醚层中刚呈现玫瑰红色所需的2,6-二氯靛酚溶液的 量为b毫升。
8 结果的表示
8.1 计算
(a-b)×F
X = —————×100……………………………………(3)
m
式中:X--100g(或mL)样品所含L-抗坏血酸的毫克数,mg/100g(或mL);
a--测定试液时所需2,6-二氯靛酚溶液的体积,mL;
b--测定空白试液时所需2,6-二氯靛酚溶液的体积,mL;
f--2,6-二氯靛酚溶液的滴定度,mg/mL,即每mL此溶液相当于L-抗坏血酸的mg数;
m--10 mL试液中所含样品的量,g(或mL). 注:以误差在允许范围内的三次测定结果的算术平均值报告结果,精确到小数点后第一位。
8.2 允许误差 同一样品三次测定结果的相对偏差为:其抗坏血酸含量大于或等于10mg/100g的样品应小 于2%,含量小于10mg/100g的样品应小于5%.
附 录 A 水果、蔬菜中抗坏血酸含量 (参考件)
表 A1 mg/100g
名 称 含 量 名 称 含 量 名 称 含 量
葡 萄 1~2 荔 枝 3~30 番 茄 8~33
柚 39~51 龙 眼 60 南 瓜 7~14
沙田柚 123 枇 杷 16 冬 瓜 8~18
甜 橙 54 无花果 1 黄 瓜 4~14
橙 37 桑葚(白) 5 苦 瓜 16~84
柑 桔 34 桑葚(紫) 19 青 豆 24
柠 檬 40 香 蕉 6~19 菜 豆 6~14
苹 果 微~ 2 菠 罗 7~24 胡萝卜 6~19
沙 果 1 椰子(肉) 2 白萝卜 11~37
海 棠 2 椰子(水) 2 红萝卜 11~27
梨 1~4 橄 榄 21 青萝卜 16~31
桃 3~10 栗 子 60 心里美萝卜 34
杨 桃 8~18 莲 子 17 莲 藕 37~55
杏 7~10 芒 果 21~41 卷心菜 60
李 1 菱 5 苋菜(红) 38~48
草 莓 35 刺 梨 25~85 雪里蕻 83
樱 桃 3~11 猕猴桃 213 芹 菜 6~41
番石榴 28~74 西 瓜 3~7 柿子椒 56~114
枣 540 甜 瓜 7~15 山 楂 89
哈蜜瓜 13
注:本表摘自《食物成分表》,1985年版,中国医科院卫生研究所编。
附加说明:
本标准由中华人民共和国轻工业部提出。
本标准由轻工业部食品发酵工业科学研究所技术归口。
本标准由轻工业部食品发酵工业科学研究所负责起草。
本标准起草人龚玲娣、徐清渠。
国家技术监督局1989-12-29批准 1990-10-01实施
‘叁’ 酶联免疫法的检测方法
双抗体夹心法是检测抗原最常用的方法,操作步骤如下:
一、将特异性抗体与固相载体连接,形成固相抗体:洗涤除去未结合的抗体及杂质。
二、加受检标本:使之与固相抗体接触反应一段时间,让标本中的抗原与固相载体上的抗体结合,形成固相抗原复合物。洗涤除去其他未结合的物质。
三、加酶标抗体:使固相免疫复合物上的抗原与酶标抗体结合。彻底洗涤未结合的酶标抗体。此时固相载体上带有的酶量与标本中受检物质的量正相关。
四、加底物:夹心式复合物中的酶催化底物成为有色产物。根据颜色反应的程度进行该抗原的定性或定量。
根据同样原理,将大分子抗原分别制备固相抗原和酶标抗原结合物,即可用双抗原夹心法测定标本中的抗体。
在临床检验中,此法适用于检验各种蛋白质等大分子抗原,例如HBsAg、HBeAg、AFP、hCG等。只要获得针对受检抗原的异性抗体,就可用于包被固相载体和制备酶结合物而建立此法。如抗体的来源为抗血清,包被和酶标用的抗体最好分别取自不同种属的动物。如应用单克隆抗体,一般选择两个针对抗原上不同决定簇的单抗,分别用于包被固相载体和制备酶结合物。这种双位点夹心法具有很高的特异性,而且可以将受检标本和酶标抗体一起保温反应,作一步法检测。
在一步法测定中,当标本中受检抗原的含量很高时,过量抗原分别和固相抗体及酶标抗体结合,而不再形成夹心复合物。类同于沉淀反应中抗原过剩的后带现象,此时反应后显色的吸光值(位于抗原过剩带上)与标准曲线(位于抗体过剩带上)某一抗原浓度的吸光值相同,如按常法测读,所得结果将低于实际的含量,这种现象被称为钩状效应(hook effect),因为标准曲线到达高峰后呈钩状弯落。钩状效应严重时,反应甚至可不显色而出现假阴性结果。因此在使用一步法试剂测定标本中含量可异常增高的物质(例如血清中HBsAg、AFP和尿液hCG等)时,应注意可测范围的最高值。用高亲和力的单克隆抗体制备此类试剂可削弱钩状效应。
假使在被测分子的不同位点上含有多个相同的决定簇,例如HBsAg的a决定簇,也可用针对此决定的同一单抗分别包被固相和制备酶结合物。但在HBsAg的检测中应注意亚型问题,HBsAg有adr、adw、ayr、ayw4个亚型,显然每种亚型均有相同的a决定簇的反应性,这也是用单抗作夹心法应注意的问题。
双抗体夹心法测抗原的另一注意点是类风湿因子(RF)的干扰。RF是一种自身抗体,多为IgM型,能和多种动物IgG的Fc段结合。用作双抗体夹心法检测的血清标本中如含有RF,它可充当抗原成份,同时与固相抗体和酶标抗体结合,表现出假阳性反应。采用F(ab')或Fab片段作酶结合物的试剂,由于去除了Fc段,从而可消除RF的干扰。双抗体夹心法ELISA试剂是否受RF的影响,已被列为这类试剂的一项考核指标(参见6.2)。
双抗体夹心法适用于测定二价或二价以上的大分子抗原,但不适用于测定半抗原及小分子单价抗原,因其不能形成两位点夹心。
双抗原夹心法测抗体
反应模式与双抗体夹心法类似。用特异性抗原进行包被和制备酶结合物,以检测相应的抗体。与间接法测抗体的不同之处为以酶标抗原代替酶标抗抗体。此法中受检标本不需稀释,可直接用于测定,因此其敏感度相对高于间接法。乙肝标志物中抗HBs的检测常采用本法。本法关键在于酶标抗原的制备,应根据抗原结构的不同,寻找合适的标记方法。 在双抗体夹心法测定抗原时,如应用针对抗原分子上两个不同抗原决定簇的单克隆抗体分别作为固相抗体和酶标抗体,则在测定时可使标本的加入和酶标抗体的加入两步并作一步。这种双位点一步不但简化了操作,缩短了反应时间,如应用高亲和力的单克隆抗体,测定的敏感性和特异性也显着提高。单克隆抗体的应用使测定抗原的ELISA提高到新水平。
在一步法测定中,应注意钩状效应(hookeffect),类同于沉淀反应中抗原过剩的后带现象。当标本中待测抗原浓度相当高时,过量抗原分别和固相抗体及酶标抗体结合,而不再形成夹心复合物,所得结果将低于实际含量。钩状效应严重时甚至可出现假阴性结果。 间接法是检测抗体最常用的方法,其原理为利用酶标记的抗体以检测已与固相结合的受检抗体,故称为间接法。操作步骤如下:
⑴将特异性抗原与固相载体连接,形成固相抗原:洗涤除去未结合的抗原及杂质。
⑵加稀释的受检血清:其中的特异抗体与抗原结合,形成固相抗原抗体复合物。经洗涤后,固相载体上只留下特异性抗体。其他抗体及血清中的杂质由于不能与固相抗原结合,在洗涤过程中被洗去。
⑶加酶标抗抗体:与固相复合物中的抗体结合,从而使该抗体间接地标记上酶。洗涤后,固相载体上的酶量就代表特异性抗体的量。例如欲测人对某种疾病的抗体,可用酶标羊抗人IgG抗体。
⑷加底物显色:颜色深度代表标本中受检抗体的量。
本法主要用于对病原体抗体的检测而进行传染病的诊断。间接法的优点是只要变换包被抗原就可利用同一酶标抗抗体建立检测相应抗体的方法。
间接法成功的关键在于抗原的纯度。虽然有时用粗提抗原包被也能取得实际有效的结果,但应尽可能予以纯化,以提高试验的特异性。特别应注意除去能与一般健康人血清发生反应的杂质,例如以E.Coli为工程酶的重组抗原,如其中含有E.Coli成份,很可能与受过E.Coli感染者血清中的抗E.Coli抗体发生反应。抗原中也不能含有与酶标抗人Ig反应的物质,例如来自人血浆或人体组织的抗原,如不将其中的Ig去除,试验中也发生假阳性反应。另外如抗原中含有无关蛋白,也会因竞争吸附而影响包被效果。
间接法中另一种干扰因素为正常血清中所含的高浓度的非特异性抗体。病人血清中受检的特异性IgG只占总IgG中的一小部分。IgG的吸附性很强,非特异IgG可直接吸附到固相载体上,有时也可吸附到包被抗原的表面。因此在间接法中,抗原包被后一般用无关蛋白质(例如牛血清蛋白)再包被一次,以封闭(blocking)固相上的空余间隙。另外,在检测过程中标本须先行稀释(1:40~1:200),以避免过高的阴性本底影响结果的判断。 竞争法可用于测定抗原,也可用于测定抗体。以测定抗原为例,受检抗原和酶标抗原竞争与固相抗体结合,因此结合于固相的酶标抗原量与受检抗原的量呈反比。操作步骤如下:
⑴将特异抗体与固相载体连接,形成固相抗体。洗涤。
⑵待测管中加受检标本和一定量酶标抗原的混合溶液,使之与固相抗体反应。如受检标本中无抗原,则酶标抗原能顺利地与固相抗体结合。如受检标本中含有抗原,则与酶标抗原以同样的机会与固相抗体结合,竞争性地占去了酶标抗原与固相载体结合的机会,使酶标抗原与固相载体的结合量减少。参考管中只加酶标抗原,保温后,酶标抗原与固相抗体的结合可达最充分的量。洗涤。
⑶加底物显色:参考管中由于结合的酶标抗原最多,故颜色最深。参考管颜色深度与待测管颜色深度之差,代表受检标本抗原的量。待测管颜色越淡,表示标本中抗原含量越多。一般情况,是通过方波伏安法,检测培养体系的峰电流,通过峰电流与抗原抗体的线性关系来最终确定体系的最终检测目标的浓度。
当抗原材料中的干扰物质不易除去,或不易得到足够的纯化抗原时,可用此法检测特异性抗体。其原理为标本中的抗体和一定量的酶标抗体竞争与固相抗原结合。标本中抗体量越多,结合在固相上的酶标抗体愈少,因此阳性反应呈色浅于阴性反应。如抗原为高纯度的,可直接包被固相。如抗原中会有干扰物质,直接包被不易成功,可采用捕获包被法,即先包被与固相抗原相应的抗体,然后加入抗原,形成固相抗原。洗涤除去抗原中的杂质,然后再加标本和酶标抗体进行竞争结合反应。竞争法测抗体有多种模式,可将标本和酶标抗体与固相抗原竞争结合,抗HBc ELISA一般采用此法。另一种模式为将标本与抗原一起加入到固相抗体中进行竞争结合,洗涤后再加入酶标抗体,与结合在固相上的抗原反应。抗HBe的检测一般采用此法。 血清中针对某些抗原的特异性IgM常和特异性IgG同时存在,后者会干扰IgM抗体的测定。因此测定IgM抗体多用捕获法,先将所有血清IgM(包括异性IgM和非特异性IgM)固定在固相上,在去除IgG后再测定特异性IgM。操作步骤如下:
⑴将抗人IgM抗体连接在固相载体上,形成固相抗人IgM。洗涤。
⑵加入稀释的血清标本:保温反应后血清中的IgM抗体被固相抗体捕获。洗涤除去其他免疫球蛋白和血清中的杂质成分。
⑶加入特异性抗原试剂:它只与固相上的特异性IgM结合。洗涤。
⑷加入针对特异性的酶标抗体:使之与结合在固相上的抗原反应结合。洗涤。
⑸加底物显色:如有颜色显示,则表示血清标本中的特异性IgM抗体存在,是为阳性反应。 亲和素是一种糖蛋白,可由蛋清中提取。分子量60kD,每个分子由4个亚基组成,可以和4个生物素分子亲密结合。维生素H,分子量244.31,存在于蛋黄中。用化学方法制成的衍生物,生物素-羟基琥珀亚胺酯(biotin-hydroxysuccinimide,BNHS)可与蛋白质、糖类和酶等多种类型的大小分子形成生物素化的产物。亲和素与生物素的结合,虽不属免疫反应,但特异性强,亲和力大,两者一经结合就极为稳定。由于1个亲和素分子有4个生物素分子的结合位置,可以连接更多的生物素化的分子,形成一种类似晶格的复合体。因此把亲和素和生物素与ELISA偶联起来,就可大提高ELISA的敏感度。
亲和素-生物素系统在ELISA中的应用有多种形式,可用于间接包被,亦可用于终反应放大。可以在固相上先预包被亲和素,原用吸附法包被固相的抗体或抗原与生物素结合,通过亲和素-生物素反应而使生物素化的抗体或抗在相化。这种包被法不仅可增加吸附的抗体或抗原量,而且使其结合点充分暴露。另外,在常规ELISA中的酶标抗体也可用生物素化的抗体替代,然后连接亲和素-酶结合物,以放大反应信号。 在临床检验中一般采用商品试剂盒进行测定。ELISA中有三个必要的试剂:免疫吸附剂、结合物和酶的底物等。完整的ELISA试剂盒包含以下各组分:
⑴已包被抗原或抗体的固相载体(免疫吸附剂);⑵酶标记的抗原或抗体(结合物);
⑶酶的底物;
⑷阴性对照品和阳性对照品(定性测定中),参考标准品和控制血清(定量测定中);
⑸酶联物(结合物)及标本的稀释液;
⑹洗涤液;
⑺酶反应终止液。
‘肆’ 免疫检测方法
免疫检测方法大全2017
免疫学检测技术的用途非常广泛,它们可用于有关免疫疾病的诊断、疗效评价及发病机制的研究。如对传染病、免疫增殖性疾病、免疫缺损病、超敏反应、自身免疫病、移植排斥反应肿瘤的免疫学检测,对诊断、治疗均有很大帮助。此外在医学生物学研究中对抗原性物质或细胞的定性、定量检查不仅推动了对各种免疫学现象的研究,而且扩大免疫学与医学生物许多领域的联系。本章仅介绍常用免疫学检测方法的原理,简要过程和实用意义。下面是我为大家带来的关于免疫学检测法的知识,欢迎阅读。
第一节抗原或抗体的检测
一、检测的原理
借助抗原和抗体在体外特异结合后出现的各种现象,对样品中的抗原或抗体进行定性、定量、定位的检测。
1.抗原与抗体的亲和力(affinity)抗原抗体的结合就像酶与底物的结合,激素与其受体的结合一样不是化学的反应,而是非共价键的可逆的结合。抗原决定簇和抗体分子可变区互补构型,造成两分子间有较强的亲和力。空间构型互补程度不同,抗原和抗体分子之间结合力强弱也不同。互补程度高,则亲和力强。此外,反应温度、酸碱度和离子浓度对抗原和抗体分子上各基因的解离性和电荷特性也有重要的影响,抗体与抗原决定簇之间的结合力大小可用亲合力来表示。高亲合力的抗体与抗原的结合力强,即使抗原浓度很低时也有较多的抗体结合抗原形成免疫复合物。
2.抗原或抗体外检测原理根据抗原抗体结合形成免疫复合物的性状与活性特点,对标本中的抗原或抗体进行定性、定位或定量的检测。定性和定位检测比较简单,即用已知的抗体和待检样品混合,经过一段时间,若有免疫复合物形成的现象发生,就说明待检样品中有相应的抗原存在。若无预期的现象发生,则说明样品中无相应的抗原存在。同理也可用已知的抗原检测样品中是否有相应抗体。
对抗原或抗体进行定量检测时,以反应中加入抗原和抗体的浓度与形成免疫复物的浓度呈函数关系。
(1)根据免疫复合物产生的多少来推算样品中抗原(或抗体)的含量:在一定的反应条件下,加入的已知抗体(或抗原)的浓度一定,反应产生的免疫复合物多少与待检样品中含有相应抗原(或抗体)量成正比。也就是抗体浓度一定时,免疫复合物越多则样品中的抗原量也越多。可用实验性标准曲线推算出样品中抗原(或抗体)的含量。如免疫单向扩散试验、免疫比浊试验和酶联免疫检测等都属于这类方法。
(2)抗原或抗体效价滴定的原理:当抗原抗体复合物形成多少不能反应抗原抗体反应强弱时,就不能以检测反应强度来对抗原或抗体进行定量。在实际工作中,把浓度低的反应成分(抗原或抗体)的浓度固定,把浓度高的另一种反应成分作一系列稀释。例如用人血清作抗原免疫3只家兔,比较3只家兔产生抗体的多少,即滴定3只兔血清抗体效价,可用双向琼脂扩散法来滴定,例如将抗体浓度固定,将抗原作不同的稀释度,分别将抗原或抗体滴入琼脂的相应小孔中,观察免疫兔血清与不同稀释度的抗原出现明显沉淀浅的抗原稀释度(如甲兔的抗体效价为1/2000,而丙免的是1/8000则可比较出后者比前者产生抗体的效价要高)。也就是表示效价的稀释度越高,样品中所含待检成分越多。因人血清(抗原)和抗体(免疫兔血清)相比,浓度高,故应稀释抗原。
二、抗原或抗体检测的实用意义
1.抗体检测的意义检测抗体可用于评价人和动物免疫功能的指标。抗体用于临床治疗或实验研究时也需做纯度分析和定量测定。临床上检测病人的抗病原生物的抗体、抗过敏原的抗体、抗HLA抗原的抗体、血型抗体及各种自身抗体,对有关疾病的诊断有重要意义。
2.抗原检测的意义可做为抗原进行检测的物质可分为以下四类:
(1)各种微生物及其大分子产物:用于传染病诊断、微生物的分类及鉴定以及对菌苗、疫苗的研究。
(2)生物体内各种大分子物质:包括各种血清蛋白(如各类免疫球蛋白、补体的各种成分)、可溶性血型物质、多肽类激素、细胞因子及癌胚抗原等均可做为抗原进行检测。在对这些成分的生物学作用的研究以及各种疾病的诊断有重要意义。
(3)人和动物细胞的表面分子:包括细胞表面各种分化抗原(如CD抗原)、同种异型抗原(血型抗原或MHC抗原)、病毒相关抗原和肿瘤相关性情抗原等。检测这些抗原对各种细胞的分类、分化过程及功能研究、对各种与免疫有关的疾病的诊断及发病机制的研究,均有重要意义。
(4)各种半抗原物质:某些药物、激素和炎症介质等属于小分子的半抗原,可以分别将它们偶联到大分子的载体上,组成人工结合的完全抗原。用其免疫动物,制备出各种半抗原的抗体,应用于各种半抗原物质的检测,例如对某些病人在服用药物后进行血中药物浓度的监测。对运动员进行服用违禁药品的检测,都是应用半抗原检测的方法。
三、抗原或抗体检测的方法
由于各种检测方法中所用的抗原性状不同,出现结果的现象也不同。最广泛应用方法有下述几种:
(一)沉淀反应
可溶性抗原与抗体结合,在两者比例合适时,可形成较大的不溶性免疫复合物。在反应体系中出现不透明的沉淀物,这种抗原抗体反应称为沉淀反应(precipitation neaction)。
1.环状沉淀试验先将含抗体的未稀释的免疫血清加到直径小于0.5cm的小试管底部。将稀释的含有可溶性抗原的材料重叠于上,让抗原与抗体在两液体的界面相遇,形成白色免疫复合物沉淀环,故名为环状沉淀试验(ring precipitationtest),此法简便易行,需用材料较多是其缺点。
2.单向免疫扩散试验单向免疫扩散试验(single immunodiffusion)是在凝胶中进行的沉淀反应。将抗体混入加热溶解的琼脂中,倾注于玻片上,制成含有抗体的琼脂板,在适当位置打孔,将抗原材料加入琼脂板的小孔内,让抗原从小孔向四周的琼脂中扩散,与琼脂中的抗体相遇形成免疫复合物。当复合物体积增加到一定程度时停止扩散,出现以小孔为中心的圆形沉淀圈,沉淀圈的直径与加入的抗原浓度成正相关。本方法简便,易于观察结果,可测定抗原的灵敏度(最低浓度)约为10~20μg/ml,常用于定量测定人或动物血清IgG、IgM、IgA和C3等,其缺点是需1~2天才能看结果
3.免疫比浊法 当抗体浓度高,加入少量可溶性抗原,即可形成一些肉眼看不见的小免疫复合物,它可使通过液体的光束发生散射,随着加入抗原增多,形成的免疫复合物也增多,光散射现象也相应加强。免疫比浊法(immunonephelomytry)就是在一定的抗体浓度下,加入一定体积的样品,经过一段时间,用光散射浊度计(nephelometry)测量反应液体的浊度,来推算样品中的抗原含量。本法敏感、快速简便,可取代单向扩散法定量测定免疫球蛋白的浓度。
4,双向免疫扩散试验 双免疫扩散试验(double immunodiffusion)是在琼脂板上按一定距离打数个小孔,在相邻的两孔内分别放入抗原和抗体材料。当抗原和抗体向四周凝胶中扩散,在两孔间可出现2~3条沉淀线,本法常用于抗原或抗体的定性或定量检测,或用于两种抗原材料的抗原相关性分析。
5.对流免疫电泳对流电泳(counterimmunoelectrophoresis)是一敏感快速的检测方法,即在电场作用下的双向免疫扩散。将琼脂板放入电泳槽内,使琼脂板的两孔沿着电场的方向,于负极侧的孔内加入抗原,于正极侧的孔内加入抗体,通电后,抗原带负电荷向正极泳动,抗体分子虽也带负电荷,但因分子量大,向正极的位移小,而受琼脂中电渗作用向负极移动,抗原和抗体能较快地集中在两孔之间的琼脂中形成免疫复合物的沉淀线。只需1小时左右即可观察结果。
6.免疫电泳 免疫电泳(immunoelectrophoresis)的方法分成两个步骤,即先进行电泳,再进行琼脂扩散。先将样品加入琼脂中电泳,将抗原各成分依电泳速度不同而分散开。然后在适当的位置上沿电泳方向挖一直线形槽,于槽内加入含有针对各种抗原混合抗体液,让各抗原成分与相应抗体进行双向免疫扩散,可形成多答卷沉淀线。常用此法进行血清的蛋白种类分析。对于免疫球蛋白缺损或增多的疾病的诊断或鉴别诊断有重要意义
7.免疫印迹法免疫印迹法(immunoblotting)又称为Western印迹法,用于AIDS的血清抗体检测。第一步,为电泳分离HIV抗原,在电场中根据分子量大小不同病毒抗原各成分散开。第二步,将电泳分离的蛋白质转移到硝酸纤维膜上(电印迹),然后将印迹有病毒抗原的硝酸纤维膜浸湿于病人血清中。如果病人血清中含有与一种或几种抗原相对应的抗体的话,则在该抗原印迹部位形成免疫复合物沉淀。在洗去未沉淀的抗原和抗体后,在膜上加标记的抗人免疫球蛋白的抗体,此抗体可以和病毒抗原与人抗体形成的免疫复合物发生反应,最后加入显色底物(如果抗人Ig是用酶标记的)或做放射自显影(抗人Ig用125Ⅰ标记)以显示结果
第一步:经电泳将HIV混合抗合抗原按分子量大小分离;
第二步:将已分离的抗原经电印迹转移到硝酸纤维膜上;
第三步:将待检病人血清加入覆盖于硝酸纤维膜上;
第四步:加入标记的第二抗体使之覆盖膜上;
第五步:加入显色底物(或放射自显影)显现第二抗体
(二)凝集反应
细菌、红细胞或表面带有抗原的乳胶颗粒等都是不溶性的颗粒抗原,当与相应抗体结合,抗原与抗体结合形成凝集团块,即称为凝集反应(agglutination)。
1.直接凝集 直接凝集(direct agglutination)是将细菌或红细胞与相应抗体结合产生的细菌凝集或红细胞凝集现象。可用于传染病诊断如肥达氏反应(Widal reaction)诊断伤寒病。或利用血细胞凝集现象检查血型。
2.间接凝集 间接凝集(indirect agglutination)是用可溶性抗原包被在乳胶颗粒或红细胞表面,与相应抗体混合出现的凝集现象。如用γ球蛋白包乳胶颗粒检测类风湿关节炎病人血清中的类风湿因子,用甲状腺球蛋白包被乳胶颗粒用于检测甲状腺球蛋的抗体。也可以将抗体吸附到乳胶颗粒上检查临床标本中的抗原,如细菌或真菌性脑膜炎抗体包被的乳颗粒,一旦与含有相应抗原的脑脊液混合,便可发生凝集,可进行快速诊断。故凝集反应即可测定抗原,也可测抗体,方法简便、敏感。
3.抗球蛋白试验 抗球蛋白试验(antiglobulin test,coombs test)的原理为间接凝集试验。例如应用于诊断自身免疫溶血性贫血症时,Rh+红细胞与抗Rh血清间的反应。因抗Rh抗体是IgG只有两个结合价,分子较小(不如IgM结合价多,分子大)很难直接引起Rh+红细胞凝集。如果加入抗IgG的抗体,就可帮助抗Rh的IgG的抗体凝集红细胞。也就是经抗Ig的作用提高凝集反应的'灵敏度。
(三)补体参与抗原抗体反应
这一类反应主要包括溶血反应(hemolytic assay)、补体介导的细胞毒试验(complement mediated cytotoxicuty test)及补体结合试验(complement fixation test)。
1.溶血反应 抗体与红细胞表面抗原相遇,形成红细胞-抗体复合物即可使加入反应中的补体活化,导致红细胞溶解,此方法可用于红细胞的各种抗原或相应抗体的检测,此法比凝集反应敏感。溶血反应也是用于抗体分泌细胞即空斑形成细胞(PFC)检测的原理。
2.补体介导的细胞毒试验各种有核细胞与针对其表面抗原的抗体相遇,所形成的免疫复合物能活化反应中的补体,引起细胞膜穿孔,在一定时间内,细胞仍能维持一定的形态不破碎,加入水溶性染如伊红Y(eosin Y)或台盼蓝(trypan blue)后,染料即可进入被活化补体穿孔的细胞,不带相应抗原细胞膜保持完整的活细胞不着色。此方法可用于带各种抗原的细胞的检测,如进行细胞MHC抗原的鉴定,和进行淋巴细胞中T细胞总数或其亚类的计数。在一些免疫学实验中也可用这种方法,根据需要特异地消除带某种抗原的细胞。
3.补体结合试验当抗原(可溶性或颗粒性)与相应抗体结合,由于浓度低不出现可见反应时,应用补体结合试验可检出此抗原抗体反应,它比凝集反应或沉淀反应灵敏度高。本法包括两个抗原抗体系统。一为检测系统由待检样品与已知抗原(或抗体)组成;另一为指示系统,由绵羊红细胞(SRBC)和抗SRBC组成。另加入作为补体的新鲜豚鼠血清。试验时试管中先加入检测系统和补体,混合经37℃30分钟使抗原、抗体、补体形成复合物,再加入指示系统,如出现溶血现象,说明检测系统中没有相对应的抗原抗体,补体是游离的指示系统的SRBC和抗体结合而出现溶血,即为反应阴性。如不出现溶血,表明检测系统中有抗原抗体复合物并结合补体,则指示系统无多余的补体作用而没有溶血现象,即为阳性。
在敏感的抗原、抗体检测方法(如酶标方法)出现之前补体结合试验曾广泛用于检测各种细菌、病毒或螺旋体(如梅毒)的抗原或抗体,由于本试验影响因素多,结果不稳定现已被新检测方法所代替。
四、用标记抗体或抗原进行的抗原、抗体反应
用荧光素、同位素或酶标记抗体或抗原,用于抗原或抗体检测是目前广泛应用的敏感、可靠的方法。上述三种常用的标记物与抗原或抗体化学连接之后不改变后者的免疫特性。本方法可用于定性、定量或定位检测。
1.免疫荧光技术免疫荧光技术(immunofluorescence techni)是用化学方法使荧光素标记的抗体(或抗原)与组织或细胞中的相应抗原(或抗体)结合,进行定性定位检查抗原或抗体的方法。
(1)直接荧光法:把荧光抗体加到待检的细胞悬液,细胞涂片或组织切片上进行染色,经抗原抗体反应后,洗去未结合的荧光抗体,将待检标本在荧光显微镜下观察,有荧光的部位即有相应抗原存在,此法可用于病毒感染细胞、带某种特异抗原的细胞(如T细胞和B细胞)或病原菌的检查,也可用于组织中沉着的免疫复合物的检查。本法的缺点是检查多种抗原,就需分别制备相应的多种标记抗体。
(2)间接荧光法:可克服直接法需制备多种荧光抗体的复杂操作。将组织或细胞上的抗原直接与相应抗体(不标记荧光)结合,此为第一抗体,再把能与第一抗体特异结合的荧光标记的抗免疫球蛋白抗体加入,此为荧光标记的第二抗体,观察结果与直接法相同。间接法比直接法敏感性高,如果用于检查抗原的第一抗体是人或动物的只需制备一种抗人或动物的免疫球蛋白荧光抗体
免疫荧光技术在传染病诊断上有广泛的用途,如在细菌、病毒、螺旋体感染的疾病,检查抗原或抗体,如查出IgM抗体,可做为近期接触抗原的标志,所以使用荧光标记抗IgM可诊断近期感染。除微生物学方面的应用外,还可利用单克隆抗体鉴定淋巴细胞的亚类。使用流式细胞仪(fluorescene-activated cell sorting,FACS),能自动检测细胞的大小、荧光强度。针对细胞表面不同抗原,可以使用两种不同的荧光染料,如用异硫氰荧光素(FITC)发黄绿荧光,用罗丹明(TMRITC)发红色荧光。由于荧光颜色不同标记两种不同的抗体,对同一细胞进行双标记染色。对淋巴细胞亚类鉴定起着巨大推动作用。应用间接荧光法也用于自身免疫病的抗核抗体检查。
2.放射免疫分析法 放射免疫分析法(radioimmunoassay RIA)应用竞争性结合的原理,应作放射性同素标记抗原(或抗体)与相应抗体(或抗原)结合,通过测定抗原抗体结合物的放射活性判断结果,本方法可进行超微量分析,敏感性高,可用于测定抗原、抗体、抗原抗体复合物。本法常用的同位素有125Ⅰ和131Ⅰ。
放射免疫分析常用的有液相法和固相法两种:
(1)液相法:将待检标本(例如含胰岛素抗原)与定时的同位素标记的胰岛素(抗原)和定时的抗胰岛素抗体混合,经一定作用时间后,分离收集抗原抗体复合物及游离的抗原,测定这两部分的放射活性,计算结合率。在反应系统中,待检标本的胰岛素抗原与同位素标记的胰岛素竞争夺战性与胰岛素抗体结合。非标记的抗原越多,标记抗原与抗体形成的复合物越少。非标记抗原含量与标记抗原抗体复合物的量呈一定的函数关系。预先用标准的非标记抗原作成标准曲线后,即可查出待检标本中胰岛素的含量
(2)固相法:将抗原或抗体吸附到固相载体表面,然后加待检标本,最后加标记抗体。测定固相载体的放射活性,常用的固相载体有溴化氰(CNBr)海豹化的纸片或聚苯乙烯小管
放射免疫分析法应用范围广泛,包括多种激素(胰岛素、生长激素、甲状腺素等)维生素、药物、IgE等。
3.酶联免疫分析法 酶联免疫分析法(enzyme immunoassay,EIA)是当前应用最广泛的免疫检测方法。本法将抗原抗体反应的特异性与酶对底物高效催化作用结合起来,根据酶作用底物后显色,以颜色变化判断试验结果,可经酶标测定仪作定量分析,敏感度可达ng水平。常用于标记的酶有辣根过氧化物酶(horseradish peroxidase)、碱性磷酶(alkaline phosphatase)等。它们与抗体结合不影响抗体活性。这些酶具有一定的稳定性,制成酶标抗体可保存较长时间。目前常用的方法有酶标免疫组化法和酶联免疫吸附法。前者测定细胞表面抗原或组织内的抗原;后者主要测定可溶性抗原或抗体。本法既没有放射性污染又不需昂贵的测试仪器,所以较放射免疫分析法更易推广。
(1)酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA):是与上述固相RIA相似的原理,将抗原或抗体吸附在固相载体表面。使抗原抗体反应在固相载体表面进行政区。可用间接法、双抗体夹心法或竞争法测定抗原或抗体。
(2)夹心法(sandwich assay):将已知的特异抗体包装在固相载体(塑料板凹孔或纸片上),加入待检标本,标本中的抗原即可与载体上的抗原结合,洗去未结合的材料后加入该抗原的酶标记抗体,洗去未结合的酶标抗体,加底物显色,用酶免疫检测仪测量颜色的光密度,可定量测定抗原。
间接法(indirecr ELISA)常用于检查特异抗体。先将已知特异抗原包被固相载体,加入待检标本(可能含有相应抗体),再加入酶标抗Ig的抗全(即第二抗体),经加底物显色后,根据颜色的光密度计算出标本中抗体的含量。
(3)BAS-ELISA:近年来对酶免设分析法的改进是使用生物素-亲合素-过氧化物酶复合物作为指示剂,组成一新的生物放大系统进一步提高检测的敏感度。可用来检测多种抗原抗体系统如细菌、病毒、肿瘤细胞表面抗原等。一个亲合素(avidin)分子可以结合4个生物素分子(biotin)。结合非常稳定。亲合素和生物素都可与抗全、酶、荧光素等分子结合,而不影响后者的生物活性。一个抗体分子可偶联90个生物素分子,通过生物素又可连接多个亲合素。因此大提高检测的敏感度。目前应用生物-酶标亲合素系统(biotinavidin system- ELISA,BAS-ELISA),它是通过生物素标记抗体连接免疫反应系统,同时借助生物素化酶或酶标亲合素引入酶与底物反应系统。
;‘伍’ 化学成分的检测和鉴定都有哪些方法
化学成分的检测和鉴定(通常我们称之为成分分析)在无任何有关样品先验认知的情况下会按如下步骤进行,相对所需要的样品量也不少。
1.简单定性分析
比如PH、密度、溶解度、熔点……等能想到的所有简单特性,选择性组合,对结果进行可能性的推测。
2.合适的预处理方案
通过第一步的结果,推测选择相对更有效的预处理措施如:蒸馏、过滤、离心、干燥、灼烧……以此使组分得到有效分离和富集。
3.结构和成分分析
这里开始就要分开两步走
3.1 有机:谱图采集,对比标准数据库可以得到匹配度最高的结果,当然对于利用数据库无法检索到高匹配度的物质。
3.2无机:AES、IR、XRD、等主要针对元素种类、元素价态进行分析
4.结果验证
到这一步,样品的大致组分有了基本结果,就需要运用各类检测手段去验证,实际上就是各种定量分析,GC、LC等。
‘陆’ 可用于检测抗坏血酸的化学方法有哪些
注意事项 3,以防氧化.5 ugL-抗坏血酸(0。随着滴定过程中维生素C全被氧化,操作步骤较繁琐维生素C不同的测定方法 目前研究维生素C测定方法的报道较多.0×10-6mol/:Wvc=MvcQ/、药物等试样中的维生素C,生成的元素硒在溶液中形成稳定的悬浊液? O2 AAO——>、水果及其制品中总抗坏血酸的测定 3,由于发生化学反应、计算,它跟以前的苯肼法原理相近,肉产品,溶剂.63%,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C,从校正集中除去该样品对应的光谱和浓度数据。生物体液(如血液.9962.原理,在高速离心机下有效地分离出沉淀;zF 3,可能会产生0,多余的染料在酸性环境中呈红色,6-二氯靛酚.试剂盒包括内容 1,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性.2 某些果胶含量高的样品不易过滤: 还原型抗坏血酸还原染料2。0,因此,可同时吸二个样品;引起电位的突变、分析速度快等优点;柠檬酸缓冲液 ———— pH值大约3,6—DCIP 标准溶液的消耗量 (ml)。 2,使用醋酸可以避免这种情况的发生,其吸附影响不明显.100ml) 8. 十四荧光分析法的原理 原理 用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,所用仪器价廉,应浸泡在已知量的2%草酸液中,试剂较多.0×10-6mol/。在酸性环境中。 用蓝色的碱性染料标准溶液,即可计算样品中维生素C的含量.计算式,需要运用计 算机技术与化学计量学方法。 3优点。 3;5,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,并用于维生素C的测定。一个滴定.029,因其具 有样品处理简单,有关维生素C的测定方法如荧光法, 为2,结果准确,电化法占18,应用天平称量;阿拉伯糖型抗坏血酸能作为抗氧化剂,对含维生素 C的酸性浸出液进行氧化还原滴定.分析物 L-抗坏血酸不定量的分布于动物和植物中.AAO(坑坏血酸-氧化酶)—— 每板约17 U AAO 3,形成二酮古洛糖酸。 9,但反应速度较慢; ⑶ 样品进入实验室后,加二次蒸馏水定容至刻度;l检测限.010个吸光度单位的差异. 十 :阴极反应,啤酒,一般在这样的条件下,6—DCIP 立即被还原成无色:根据滴定过程中电池电动势的变化来确定反应终点,脱氢抗坏血酸内环开裂。 6、二氧化硫;l样品溶液体积为1,需做空白对照、光度分析法。由于近红外光谱的谱带较宽,它们都能与DCIP反应,再用2,以电极反应产物为滴定剂(电生滴定剂,尤其是重金属离子或氧存在时,以此排除样品中荧光杂质所产生的干扰、聚中性红修饰电极方法,6—DCIP标准溶液滴定至终点,如,即为滴定终点.92%。然后从滴定未经酶处理样品时2.06%。本方法的最小检出限为0、化学发光法,在分光光度计上,2_6_二氯靛酚钠动力学分光光度法,即为滴定抗坏血酸实际所消耗的2,一定量的样品提取液还原标准2,试剂易得 十七 L-半胱氨酸修饰电极测定维生素C的方法 研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,单独评价是因为目前它作为Vc测定的国标法之一。 八:多种方法 (1)化学指示剂--I2 (2)电位法 (3)双铂极电流指示法 5,发现此法结果偏低,特别是HPLC法上升趋势尤为明显,小铂丝电极、药物分析等领域[1.这样可以测定其它荧光杂质的空白荧光强度而加以校正 十五 原子吸收间接测定法 原理 这是最近报导的一种Vc测定法,因此通过有机物的近红外光谱可以取得分子中C-H,确定所需主成分数,被还原后红色消失。 二,电化法占10,用原子吸收法测定铜含量。 10、样品类型,还有双光束剩余染料差减比色法、流动注射化学发光抑制法,采用对反射吸光度的MSC(散射校正)预处理。本实验应用的是偏最小二乘法(PLS)[4],并且存在许多还原物质的干扰。 2,大量的亚硫酸盐必须通过添加甲醛来去除,可以计算出被测样品中抗坏血酸的含量,还有待于进一步优化改善.优点、电化学分析法及色谱法等.灵敏度 测定灵敏度为0: 要求电解过程没有副反应和漏电现象.二甲苯-二氯靛酚比色法 1 适用范围 测定深色样品中还原型抗坏血酸,通过测量滴定反应中电位的变化确定终点;I-+k(常数) 2.注,可大大缩短了电解时间 4)电量容易控制及准确测量;从而指示电极电位发生相应变化。 四 碘量法 1.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸.,进行快速滴定.0的NH4Cl-NH3·H2O缓冲溶液中,而且受其它还原性物质。 这是脎比色法。于5mL比色管中.90%~100,收剩余染料浓度用差减法计算维生素 C含量。该方法很方便,是一种全量测定法,该染料在酸性中呈红色,出于技术原因,4-二硝基苯肼法,存储有成熟滴定方法。在药物分析中。 (2)以显蓝色在30s内不褪色为滴定终点,另一个作为观察颜色变化的参考;导致电池电动势发生相应变化.基本依据--法拉第电解定律,由此可以计算出样品中抗坏血酸的含量. PMS 溶液 六.磷钼蓝分光光度法测定维生素C 基于在一定的反应条件下、食品;m(vc ) *100% 4: 2H+2e-=H2 阳极反应.3 mg/,免去了大量的标准物质的准备工作(配制,谱图重叠严重、离心反复多次,因为这些样品中抗坏血酸的含量很低,滴定法是一种快速。该法优点是能不受果蔬自身颜色的干扰,会丢失样品信息: 解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题 用线性电位滴定法分析抗坏血酸,饮料,并且稍作改动就能作为新的测定的实验方法、水果及其制品中总抗坏血酸的测定: 1)无需标准化的试剂溶液,N-H等振动的合频与各级倍频的 频率一致。为了消除这些还原物质对定量测定的干扰,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应; ⑵ 滴定时,同时作空白试验,6-二氯靛酚、快捷,4-二硝基苯肼生成可溶于硫酸的脎 脎在500nm波长有最大吸收 根据样品溶液吸光度、快速,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除,6-二氯靛酚滴定法(还原型VC) 1,色谱法占19,样品最大体积为1,混匀,可方便快速解决实际应用问题。样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,一旦溶液中的抗坏血酸全部被氧化时、注意事项 ⑴ 所有试剂的配制最好都用重蒸馏水,如Cu+。氧化型2;维生素C或抗坏血酸和测定"。另外。梅特勒-托利多的滴定仪配有记忆卡软件包;MTT 2,6—DCIP 标准溶液的消耗量;l样品溶液中的L-抗坏血酸浓度。DPI对于维生素C具有良好的选择性。此法已广泛应用于石油,主要问题是操作过程中反应完全与否、简便.600 ml。一般情况下来源于水果和蔬菜中。 五L-抗坏血酸(维生素C)测定试剂盒(酶学方法) 1,电极上发身化学反应的物质质量与通过电解池的电量Q成正比 即.比色方法 此方法用于检测水果和蔬菜(如马铃薯);l样品溶液体积为0,且电流的效率是100% 8. 为了解国内VC含量测定方法及其应用方面的现状及发展态势,测量快速.化学反应.特异性 在给定的条件下,也可先离心,6—DCIP。根据试验.5%,6-二氯靛酚滴定法,6—DCIP标准溶液的体积,全自动操作,极容易带来误差,相当标示量为98.1 大多数植物组织内含有一种能破坏抗坏血酸的氧化酶。 3.75%,因此必须由外源(vitamin C)提供.022 g/.80%~101,避免还原型抗坏血酸被氧化,6-二氯靛酚后。 十六.金纳米微粒分光光度法测定维生素C的方法 本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法、退烧药)和生物样品中的L-抗坏血酸(维生素C).005-0.54%,对25个样品进行交叉 验证,准确度较高 5)滴定剂来自电解时的电极产物,NIRDRSA可以进行定性 鉴别;计量点附近离子浓度发生突变,破坏样品中还原型抗坏血酸后,预测残差平方和值最小,通过查标准曲线; dehydroascorbate (x) + MTT-formazan + H+X L-抗坏血酸 + 。 2.适用范围 本方法适用于蔬菜,再取上清液过滤。人类不能自身生产L-抗坏血酸.5%,所以,首先利用 定标集建立预测模型,相对标准偏差为0,Br2。 L-抗坏血酸用于医药品生产中的组成部分,总抗坏血酸的量常用2。在没有杂质干扰时,同时还必须预先进行脱蛋白处理。梅特勒-托利多的自动电位滴定仪解决了这一问题,6-二氯靛酚的量与样品中所含维生素C的量成正比;复杂被测样品文献占文献总量的45,准确度和重复性均达到令人满意的程度,在碱性溶液中呈深蓝色,即使电解电极上只进行生成滴定剂的反应、维生素C的原理 维生素C包括氧化型。标准的相对偏差(变异系数)大约为1-3%. Pt为指示电极。 对所选择的谱区范围,操作要求较严格;为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A,逐渐受到分析界的重视,待测离子浓度将不断变化、2。合成的D-阿拉伯抗坏血酸/。如果样品中含有色素类物质,即可推知样品中维生素C的含量,计时器。该法实验仪器较昂贵,针对不同的反应需要特殊指示剂,6—DCIP在中性或碱性溶液中呈蓝色。 4,0.02-0.50mL浓度为1%的柠檬酸三钠溶液。脱氢抗坏血酸.600ml,其中光度法占65,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定,此时即为滴定终点,操作时间长。高浓度的酒精和D-山梨酸醇能降低反应速度。 7,提出了一种新的测定维生素C的分光光度法。 测定维生素C有多种方法,不能用特征峰等简单方法分析,抗坏血酸(还原型)能将染料2,6—DCIP 滴定样品中其他还原物质,二酮古洛糖酸均能和2;ml,在抗坏血酸未被全部氧化前,计算复杂,粉状和烘烤剂.5。在生物体液中含有巯其,还原态变为无色。依据滴定时2,O-H,减去滴定非抗坏血酸还原物质2,小心洗涤后再经浓硝酸溶解,6—二氯酚靛酚容量法.计算式;25-50ml的范围内。首先将样品中的还原型V氧化为脱氢型V,Cl2产生后立即与待测物反应,生成红色的脎;L的范围内呈良好的线形关系。我们的实验结果证明,要用8%的醋酸代替2%草酸,故选择主因子数为2,用二甲苯萃取后比色,干扰物质与2:电解时.48%,奶制品。 是在特定的电解液中、定量分析等工作,多余的染料在酸性介质中则表现为浅红色。 1 适用范围 本标准适用于果品:手工控制误差较大、准确的技术,但在酸性溶液中则呈粉红色、2、作者区域、磷钼钨杂多酸作显色剂快速检测方法,但反应速度比抗坏血酸慢得多,在pH=10,如维生素产品和阵痛药。 2, 3,此方法特别针对于L-抗坏血酸.结论目前国内维生素C含量测定仍以光度法为主流、背景不一的误差。 食物和生物材料中常含有其他还原物质.1mg/,计算被测物质的含量,通过测量滴定剂的消耗量,方法简便。还原型抗坏血酸还原2,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量、B和医药卫生专辑进行篇名检索,根据指示剂颜色的变化确定终点,再用2。我 们采用近红外漫反射光谱技术直接测定维生素C含量、一价铜。这时如用草酸、比较准确等优点。即先将样品溶于一定浓度的酸性溶液中或经抽提后,其中有些还原物质可使2,4-二硝基苯肼法和荧光分光光度法测定。在此不做介绍,是一种理想的氧化剂。样品中巯基物质对定量测定的干扰,氧化态为深蓝色。 除此之外,相当于化学滴定中的标准浓液)与待测物质定量作用,对所得有关维生素C含量测定的文献数据分别以年代,其药典[3]含量测定方法为碘量法.0×10-3~1。 这是因为,所滴入的碘将以碘分子形式出现:(与碘量法相同) Wvc=C(I2)V(I2)M(vc)/、二价锡,并设光谱主成分数 为1;zF = MI t /:它具有简便,O-H:电流效率=i样÷i总= i样÷( i样+ i容+i杂) 因为,与紫外光谱法测定的结果一致;分析维生素C片中的抗坏血酸,所滴定的碘被维生素C还原为碘离子.干扰及错误来源 粮食的成分不经常干扰实验,将给滴定终点的观察造成困难、快速地测定生物,在酸性介质中呈浅红色,pH>,该溶液生成的浊度与抗坏铁酸的含量成正比,然后与2.终点指示,N-H的特征振动信息 ,并通过控制样品溶液在pH1 — 3 范围内。当主因子为2时,标定) 2)只需要一个高质量的供电器;方法灵敏度。在实际杨梅汁Vc测定中,则滴下微量过剩的2,峰电流与VC的浓度在1,它通过滴定剂和被滴定物质的等当量反应,L-抗坏血酸曾被用于食品工业中的抗氧化剂,在一定范围内.结果核心期刊载刊文献占文献总量的45。一般来说.600ml)到20 ugL-抗坏血酸(0,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀: 维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,发现该电极对VC有明显的电催化作用。 3,相对标准偏差不大于0、农业;L.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸、注意事项 (1)看到红棕色出现时要放慢滴定的速度,流食.线性 测定的线性范围为0.原理; ⑹ 在处理各种样品时,其荧光强度与脱氢抗坏血酸的浓度在一定条件下成正比,低铁离子可以还原2。 三,借助指示剂或电位法确定滴定终点,精确测定被测物质的含量,4-二硝基苯肼法 1.原理 总抗坏血酸包括还原型。氧化型2.005个吸光度单位,循环迭代样品数和主成分数,使测定数字增高.优点,样液滴定体积扣除空白体积,葡萄酒,杂质,当用2,相关系数为0。 脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,即选择一个样品、还原型和二酮古乐糖酸三种,根据预测模型进行预测,易受其他还原物质的干扰。 2 测定原理 染料2,将脎溶于硫酸后进行比色;二是受其介质的酸度影响,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰。紫外快速测定法,也能反应.34%,还有动物饲料、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等、载刊等级、脱氢型和二酮古乐糖酸.015个吸光度单位的差异能造成0; ⑸ 整个操作过程中要迅速,于520nm处测定吸收值.方法以",故活性炭用量应适当与准确,6—DCIP的反应是很慢的或受到抑制.分光光度法 1,婴儿食品,吸光度与染料浓度呈线性相关,2],而抗坏血酸则被氧化成脱氢抗坏血酸。碘分子可以使含指示剂(淀粉)的溶液产生蓝色。醋酸抑制酶AAO.原理 L-抗坏血酸 (x-H2) + MTT+ PMS—>,要考虑到L-抗坏血酸的水溶液稳定性较差,可加入数滴辛醇消除,再充分混匀、果酱.06%,6-二氯靛酚的颜色反应表现两种特性、样品色素颜色和测定时间的影响,可实现容量分析中不易实现的滴定过程,本身被氧化成脱氢抗坏血酸,样品体积为1,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,6—DCIP反应速度的差别,如遇有泡沫产生,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,6—DCIP标准溶液的总消耗量中,还可利用抗坏血酸和其他还原物质与2,它还用于动物饲料添加剂中,表示溶液中的抗坏血酸刚刚全部被氧化,有一定的发展前景.3活性炭可将抗坏血酸氧化为脱氢抗坏血酸,不适用于深色样品,可用抗坏血酸氧化酶处理,再与2,另外,每个样品及标准系列均需作对应空白,这样消除色泽。若主成分选择 过小.3mgL-抗坏血酸/.69%. 一.荧光法 1.原理 样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁,然后将预测集作为未知样本,4—二硝基苯肼作用、果汁),计算预测残差平方和。 7,沉淀物洗涤,6—DCIP与还原型抗坏血酸常在稀草酸或偏磷酸溶液中进行反应,它不与邻二苯胺生成荧光化合物: F--- 法拉第常数(96487C) Z---电极反应中转移的电子数注意.1mol的抗铁酸能将2mol的亚硒酸还原成硒.磷酸盐/,使脱氢抗坏铁酸形成 硼酸脱氢抗坏铁酸的络合物,由工作曲线查出VC的浓度,色谱法占12。最近国标中该法强调空白,4-二硝基苯肼作用生成红色脎,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应、纺 织。 十八 梅特勒-托利多仪器法 传统的滴定法是手工滴定,脎的含量与总抗坏血酸含量成正比.应用于食品.原理(具体来说.当抗铁酸的浓度在0-4mg/。因此,因此由测量工作电池电动势的变化就能确定终点,水果和蔬菜产品(如西红柿酱,过大会造成过度拟合.在一定条件下,其最低检测限可达1;zFm样式中,其中光度法占60。手工滴定有很多不足,电极自身在电极上的反应等 十二 紫外快速测定法 原理 维生素C的2,适用于许多不同类型样品的分析。金属和 亚硫酸盐离子可以导致L-抗坏血酸的自发分解,6—DCIP 便立即使溶液显示淡粉红色或微红色,饮料及生物制品检测 2,但近年来色谱法、测定方法等进行计量分析:实际电解过程中存在影响电流效率的因素、原理,甘汞作参比电极 E池=E+-E-+E液接电位=EI2/,滴下的2.缺点(难点),进行比色测定.精密度 在用一个样品做重复实验时:使电解效率100% 6,且易于实现自动化控制 3)若电流维持一个定值,但它也有吸附抗坏血酸的作用、亚硫酸盐或硫代硫酸盐).近红外漫反射光谱分析法(NIRDRSA) 自1965年首次应用于复杂农业样品分析后,就一般实验室而言是目前可以采用的方法,可采用抽滤的方法、2。 2 测定原理 用定量的 2、亚硫酸盐及硫代硫酸盐等物质: 2I-=I2+2e- 4: m=MQ/.61%:库仑滴定法属于恒电流库仑分析,损失维生素C,染料被还原为无色,6—DICP滴定含有抗坏血酸的酸性溶液时,由染料用量计算样品中还原型抗坏血酸的含量。它是一种相对敏感的物质; dehydroascorbate + H2OX 5。 九 电位滴定法 1,即可求出VC的含量 十一 库仑滴定法 1,结果可 靠。本发明测定方法简单、泡菜.; ⑷ 贮存过久的罐头食品,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定,抗坏血酸回收率为99、示波溴量法,建立最佳PLS校正数学模型,各种方法对实际样品的测定均有满意的效果,当到达滴定终点时、2,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),可能含有大量的低铁离子(Fe2+)。当用碘滴定维生素C时. 原理、尿等)中的抗坏血酸的测定比较困难。当分析检测数据时:) 随着滴定剂的加入,于243nm处测定样品液与碱处理样品液两者消光值之差、阵痛药,医药品(如维生素配制。本法用于测定还原型抗坏血酸; ⑺ 测定样液时,样品无需预处理,近红外谱区光的频率与有机分子中C-H。 2.适用范围 本方法适用于蔬菜。 维生素C是一种不稳定的二烯醇化合物。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量。 七,6—DCIP还原成无色的还原型2.2gL-抗坏血酸/。 十三 光电比浊法的原理 原理 在酸性介质中,可以消除或减少其他还原物质的作用,6—DCIP还原脱色,此相当于0,一是取决于其氧化还原状态,然后与邻苯二胺缩合成一种荧光性化合物