❶ 解方程的步骤
一般解法:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法:
⒈认真审题
⒉分析已知和未知的量
⒊找一个合适的等量关系
⒋设一个恰当的未知数
⒌列出合理的方程
⒍解出方程
⒎检验
⒏写出答案
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过b^2-4ac的值来判断一元二次方程有几个根
1.当b^2-4ac<0时 x无实数根(初中)
2.当b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1)^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程) ax^2+bx+c=0 同时除以a,可变为x^2+bx/a+c/a=0 设:x=y-b/2 方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0
X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
❷ 解方程的方法是什么,简单些
解整式方程的一般方法步骤是:1。去分母。
2。去括号。
3。移项。
4。合并同类项。
5。方程两边同除以未知数的系数。
解分式方程的一般方法是:1。去分母将分式方程化为整式方程。
2。解这个整式方程。
解无理方程(根式方程)的一般方法是:1。将无理方程化为有理方程。
2。解这个有理方程。
❸ 如何分解因式 3种方法来分解因式
目录方法1:分解数字和基本的代数式1、对单个数字进行因式分解的定义。2、能因式分解的变量表达式。3、利用乘法分配律分解代数方程式。方法2:分解二次方程1、确定方程是二次方程 (ax + bx + c = 0)。2、二次方程系数中,a = 1,可以因式分解成(x+d )(x+e),其中d × e = c,并且d + e = b。3、可能的话,用试验法分解因式。4、配方法。5、利用因式分解解二次方程。6、检查结果,有时解出的结果并不是方程的解。在数学中,“因式分解”是指将一个数字或者表达式分解成几个数或者几个表达式的积的形式。因式分解是解决一些代数问题的常用方法,正确的进行因式分解是求解二次方程和其他多项式的基础。因式分解可以简化代数式,从而方便求解,而且还可以帮助你排除可能的答案,这要比直接动手计算再排除要快得多。
方法1:分解数字和基本的代数式
1、对单个数字进行因式分解的定义。因式分解的概念很简单,但是在实际操作中,对复杂的方程进行因式分解却并不容易。因此,先从单个数字的因式分解开始,然后再应用到基本的代数式中,最后再来解决复杂的问题。一个数字的因子,是相乘之后的积为该数字的几个数。比如,12的因子是1, 12, 2, 6, 3, 4。因为1 × 12, 2 × 6, and 3 × 4 的结果都是12。也可以这样理解,即一个数字的因子,是能整除这个数的数字。
你能求出60的所有因子吗?因为60可以被很多数字整除,所以60是很常用的一个数字(比如1小时有60分钟,1分钟有60秒,等等)。60的因子是1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
2、能因式分解的变量表达式。就好像数字可以被分解一样,变量的常数系数也可以被分解。因此,你需要先找到变量的系数。对变量进行分解是简化代数方程的重要环节。比如,12x可以看做是12和x的乘积。我们可以将12x写作3(4x), 2(6x), 等等,只要写成12的因数相乘的形式即可。我们还可以将12的因数再进一步分解,换句话说,并不是分解到3(4x)或2(6x)就结束了,而是继续将4x和6x分解成3(2(2x)和2(3(2x)。显然,两个表达式的结果是一样的。
3、利用乘法分配律分解代数方程式。利用分解数字和带系数的变量的方法,你可以将数字和带系数的变量分解成含有相同因数的形式,从而简化表达式。通常,为了尽可能的简化,我们需要求两个数的最大公因数。而之所以可以这样化简的根据,是乘法的分配律,即对于任意的a, b, c, a(b + c) = ab + ac。举例来说。对12 x + 6,进行因式分解。首先,先求出12x和6的最大公因数。6是最大的既可以整除12又可以整除6的数,所以可以化简成6(2x + 1)。
对于负数和分数也一样适用。比如,x/2 + 4,可以写成1/2(x + 8),,-7x + -21可以写成-7(x + 3)。
方法2:分解二次方程
1、确定方程是二次方程 (ax + bx + c = 0)。二次方程的标准形式是ax + bx + c = 0,其中a, b, c是常数,并且a不为0(a可以是1或-1)。如果方程有1个变量(x),并且有1个或多个x的平方,你可以将等号一侧的变量移到等号另一端,让等号一端为0,另一端有ax等。比如,代数方程。5x + 7x - 9 = 4x + x - 18可以简化成 x + 6x + 9 = 0,转化成标准二次方程形式。
方程中有更高次的x项,比如x,x等。这样的方程是三次方程或四次方程,以此类推,除非大于2次的x项可以约去,否则这样的方程不是二次方程。
2、二次方程系数中,a = 1,可以因式分解成(x+d )(x+e),其中d × e = c,并且d + e = b。如果二次方程的形式是x + bx + c = 0 (换句话说,x的系数为1),那么这样的方程可能(不保证)分解成这样的形式。找到两个数,它们的积是c,和是b,当你找到这样的两个数d和e之后,你就可以得到如下: (x+d)(x+e)。这两项的乘积就是原二次方程,换句话说,这两项就是二次方程的因式。比如,方程x + 5x + 6 = 0。 3和2的乘积是6,3和2的和是5,所以方程可以写成(x + 3)(x + 2)。
根据具体方程的不同,最终结果的形式也有不同:如果方程的形式是x-bx+c,那么结果的形式是:(x - _)(x - _)
如果方程的形式是x+bx+c,那么结果的形式是:(x + _)(x + _)
如果方程的形式是x-bx-c,那么结果的形式是:(x + _)(x - _)
注意:上式空格中的数字可以是分数或小数,比如方程x + (21/2)x + 5 = 0的因式分解结果是 (x + 10)(x + 1/2)
3、可能的话,用试验法分解因式。信不信由你,对于一些简单的二次方程,一种简单的因式分解方法就是试验,将你认为可能的因式带入,直到你找到正确的因式为止。这样的方法叫试验法。如果方程的形式是ax+bx+c且a>1,最终的因式分解的结果的形式可能是(dx +/- _)(ex +/- _),其中d和e是非零常数,且乘积为a。d或e可以为1(或者都为1),对于这个并没有硬性规定。如果d和e都为1,那么你可以使用上文的方法进行因式分解。举个例子来说明。方程3x - 8x + 4,第一眼看上去很吓人。然后,当我们意识到3的因式只有2个(3和1)时,问题就变得简单了,因为我们知道最后的形式一定是(3x +/- _)(x +/- _)。在本例中,空格处都填-2,即为正确结果。-2 × 3x = -6x 和-2 × x = -2x;-6x和-2x的和是-8x;-2 × -2 = 4,所以,括号内的因式相乘的结果就是原式。
4、配方法。某些情况下,利用一些公式,二次方程可以很快很容易的因式分解。利用公式x + 2xh + h = (x + h),如果一个二次方程中,b的值是c的平方根的两倍,那么方程就可以转化成(x + (sqrt(c)))的形式。比如,方程x + 6x + 9符合上述要求。3 =9,3 × 2= 6。所以,方程的因式分解结果是(x + 3)(x + 3),或者(x + 3)。
5、利用因式分解解二次方程。不论你的因式分解结果是什么,因式分解之后,你可以令每个因式的结果为0,从而解出x的值。由于你要找的x是能够让方程为0的值,所以一个能够让因式为0的x的值就是你要求的x。让我们回到方程x + 5x + 6 = 0中。因式分解的结果是(x + 3)(x + 2) = 0。如果任意一个因式为0,那么整个方程的结果也为0,所以可能的x的解是让(x + 3) 和(x + 2)等于0的值。解得的结果分别是-3和-2。
6、检查结果,有时解出的结果并不是方程的解。当你求出了x的可能的值之后,将它们分别代入原方程,检查一下它们是否是方程的解。有时,你求出来的结果可能无法让原方程的值为0,这样的值要舍去。将-2和-3代入方程x + 5x + 6 = 0。首先,代入-2:(-2) + 5(-2) + 6 = 0
4 + -10 + 6 = 0
0 = 0。正确,所以-2是方程的解。
再代入-3:(-3) + 5(-3) + 6 = 0
9 + -15 + 6 = 0
0 = 0。正确,所以-3也是方程的解。
❹ 解方程最简便的方法
解方程的主要步骤就在于去分母去括号,移项 合并同类项 系数化为一
只要一步一步做,就能得到正确的答案
首先看方程中有没有带有分母的分式,我们同时乘分母的最小公倍数,约去分母,然后将括号展开,就得到了去分母去括号后的式子,将未知数移动到方程的左侧,其他数移动到右侧,除以未知数前面的系数,就得到最后的结果。对于一些特殊的方程我们可以通过代入法直接得到结果,对于一元二次方程,可以通过完全开平方形式得到,或者万能公式。以上就是解方程的主要计算方法。
❺ 求因式分解的简便方法
这是竞赛中的快速方法分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x3-x2+x-1 解法:=(x^3-x2)+(x-1) =x2(x-1)+ (x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出 x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 十字相乘法 这种方法有两种情况。 ①x2+(p+q)x+pq型的式子的因式分解 </b>这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . </B>②kx2+mx+n型的式子的因式分解 </b>如果有k=ac,n=bd,且有ad+bc=m时,那么kx2+mx+n=(ax+b)(cx+d). 图示如下: a b ╳ c d 例如:因为 1 -3 ╳ 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 拆项、添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b). 配方法 </B>对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x2+3x-40 =x2+3x+2.25-42.25 =(x+1.5)2-(6.5)2 =(x+8)(x-5). 应用因式定理 对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。 相关公式 注意:换元后勿忘还元. 例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则 原式=(y+1)(y+2)-12 =y2+3y+2-12=y2+3y-10 =(y+5)(y-2) =(x2+x+5)(x2+x-2) =(x2+x+5)(x+2)(x-1). 也可以参看右图。 求根法 </B>令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1). 图象法 </B>令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确。 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2). 主元法 </B>先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 特殊值法 </B>将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。 待定系数法 </B>首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) 相关公式 =x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图。 双十字相乘法 </B>双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。 利用根与系数的关系对二次多项式进行因式分解 例:对于二次多项式 aX^2+bX+c(a≠0) aX^2+bX+c=a[X^2+(b/a)X+(c/a)X]. 当△=b^2-4ac≥0时, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2).
❻ 解方程有几种方法如何才能轻松求解
在我们学习的生涯中,其实很多人对于数学都是非常恐惧的,尤其是对于大部分的女生来说,她们在学习数学这方面就感觉到没有天赋,而且学起来是非常吃力的。因此他们就会经常对数学上面的问题产生很大的困惑,所以有些人就会产生这样的疑问,就是解方程有几种方法呢?如何才能轻松求解?对这个问题的回答,在我个人看来,比如说有公式法,十字相乘法配方法,以及因数分解法等,我们要根据方程的具体形式来确定,下面我们具体来了解一下。
所以我们在平时的生活中,也应该要更多的去关注这方面的问题,对于每个人而言,了解这方面的问题都我们都是有一定的好处的,而且现在如果我们学会更多的求职方向的方法的话,那么我们在今后遇到什么数学难题的话,他可以给我们带来很大的帮助。以上就是我总结的一些对于这一问题的认识。