A. 解决排列组合问题用哪些数学思想和方法
一、排列组合部分是中学数学中的难点之一,原因在于
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力.
二、两个基本计数原理及应用
(1)加法原理和分类计数法
1.加法原理
2.加法原理的集合形式
3.分类的要求
每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)
(2)乘法原理和分步计数法
1.乘法原理
2.合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同
B. 解决组合问题的方法一般有什么法
一、优限法
优先考虑有限制条件的元素或者位置。
例1、由数字1、2、3、4、5、6、7组成无重复数字的七位数,求数字1必须在首位或末尾的七位数的个数。
A.240种 B.720种 C.1440种 D.2880种
【答案】C。
【解析】因为题干当中元素“1”有限制条件,所以优先考虑它,元素“1”的排列方式共
=2种,再考虑剩下的6个因素,共
=60种,根据乘法原理共有24×60=1440种。故选择C项。
四、间接法
用全部的方法数或者结果数扣除掉不符合题目条件的方法数或者结果数,剩下的即为所求。有时候正面思考情况比较多,就可以反向去考虑,会大大降低解题的时间。
例4、由1-9组成一个3位数,3位数肯定有数字重复的组合有多少种?
A.125种 B.225种 C.450种 D.655种
【答案】B。
【解析】如果正面去考虑,有数字重复,包含的情况有很多种,所以可以反向去考虑,我们找3位数没有数字重复的组合共有:9×8×7=504种,而不考虑题目的限制条件,一共应该有9×9×9=729种,所以所求为:729-504=225种,故选择B选项。
C. 做数学排列组合问题有哪些方法,帮助啊!(详)
要正确解答排列组合问题,第一要认真审题,弄清楚是排列问题还是组合问题、还是排列与组合混合问题;第二要抓住问题的本质特征,采用合理恰当的方法来处理,做到不重不漏;第三要计算正确。下面探讨解答排列组合问题的一些常见策略,供大家参考。
一、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略
对于带有特殊元素的排列问题,一般应先考虑特殊元素、特殊位置,再考虑其他元素与其他位置,也就是解题过程中的一种主元思想。
二、解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略
解含有约束条件的排列组合问题,应按元素的性质进行分类,按事件发生的连贯过程分步,做到分类标准明确、分步层次清楚,不重不漏。
三、解排列组台混合问题——采用先选后排策略
对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。四、正难则反、等价转化策略
对某些排列组合问题,当从正面入手情况复杂,不易解决时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理。即采用先求总的排列数(或组合数),再减去不符合要求的排列数(或组合数),从而使问题获得解决的方法。其实它就是补集思想。
D. 简单的排列问题,我们可以用什么方法
可以用以下方法:
1、以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
2、以位置为主体,即先满足特殊位置的要求,再考虑其他元素。
3、先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列或组合数。
排列组合计算公式技巧如下:
从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
有些题目所给的特殊条件较多或者较为复杂,如果直接考虑需要分许多类,而它的反面(不满足题意)却往往只有一种或者两种情况,此时我们先求出反面的情况,然后将总情况数减去反面情况数就可以。