㈠ 氚浓度标准值
1dpm/g=139.44TU
氚是氢的一种放射性同位素。氚的半衰期为12.43 A,地下水中氚含量较低,经电解富集。
首先对水样进行蒸馏,除去盐和大部分淬火物质和干扰放射性核素,然后用电解法进行浓缩。浓缩液在真空中蒸馏,样品用闪烁溶液制备并乳化。乳化样品计数与低本底液体闪烁计数器的β放射性。如果氚含量高,就不能进行电解浓缩。
仪器和设备
低本底液体闪烁光谱仪。
电导仪。
电解池。
电解池。
电极。
整流设备。
全玻璃磨蒸馏器。
计数瓶20mL石英瓶;100毫升瓶子聚四氟乙烯。
试剂
高锰酸钾(固体)。
过氧化钠(固体)。
闪烁体中,将6gPPO(2,5 -diphenylzolium)和3gPOPOPO [1,4 -bis (2,5 -phenylzolium)苯]溶于1000mL甲苯中,加入500mL TritonX-100 (TritonX-100),混合均匀,保存于棕色瓶中。
氚水标准。
分析步骤
1)常压蒸馏。在烧杯中取水样,加入高锰酸钾使其呈紫红色;加入过氧化钠,pH≈12,迅速倒入蒸馏瓶;将蒸馏瓶放在电炉上,在常压下蒸馏,去掉前几毫升的蒸馏液。检测电导率应小于2.0μS/cm。
2)电解水样。准确取150mL蒸馏水样品,加入1.2GNa2O2,搅拌均匀,移入电解池,插入电极,关闭橡胶塞,连接电极系列,直流电源。电解应以小电流(3 ~ 5A)开始,防止气泡逸出时蒸汽损失。同时,应将电解水产生的氢和氧的爆炸性混合物安全引出房间。当电解液产品小时,可将电流增加到10A左右,然后逐渐减小电流,注意及时调整,以免电流密度过大时电极面积过大。当浓度达到10mL时,切断电源,取出电极,准确测量浓液体积(mL),计算浓度倍数
3)真空蒸馏。将所有浓缩的电解液转移至50mL蒸馏瓶中,用酒精干冰冷冻后抽真空。低温蒸馏采用调压器控制,蒸馏水的pH值在7 ~ 8之间。
4)样品制备与乳化。准确地将12.0ml闪烁液和5.0ml经真空蒸馏合格的水样加入20mL计数瓶中。合上计数瓶盖,在38 ~ 42℃的水中乳化,摇匀,冷却后封好瓶口。
5)测量。在选定的操作条件下,在黑暗中放置两天,用低本底液体闪烁光谱仪对乳化样品进行测量。
分析结果计算
氚的浓度计算公式如下:
岩石矿物分析第4卷资源环境调查与分析技术
式中:氚浓度,TU(氚单位,每1018个氢原子中有一个);C为样本总数;T为总样本计数时间,min;B为本底计数率,min-1(CPM);V为用于计数的样本数,mL;CE表示仪器计数效率,%,DPM每分钟变化;Rt为氚电解回收率,;α为样品体积的浓度比;E -λt为氚衰变函数(表83.2氚衰变系数表)。
㈡ 氚的测定
放射化学法
方法提要
氚是氢的一种放射性同位素。氚的半衰期为12.43a,一般地下水中氚含量较低,多采用电解法进行浓缩富集。
水样首先经过蒸馏,除去盐分和大部分猝灭物质及干扰的放射性核素后,进行电解浓缩。浓缩液再进行真空蒸馏,然后,用闪烁溶液配制试样并乳化。乳化好的试样用低本底液体闪烁计数器对β放射性计数。若氚含量较高时,可不进行电解浓缩。
仪器和装置
低本底液体闪烁谱仪。
电导率仪。
电解槽。
电解池。
电极。
整流设备。
全玻璃磨口蒸馏器。
计数瓶20mL石英瓶;100mL聚四氟乙烯瓶。
试剂
高锰酸钾(固体)。
过氧化钠(固体)。
闪烁液称取6gPPO(2,5-二苯基唑)和3gPOPOPO[1,4-二(2,5-苯基唑基)苯],溶解于1000mL甲苯中,加500mL曲通X-100(TritonX-100),混合均匀,贮存于棕色瓶中。
标准氚水。
分析步骤
1)常压蒸馏。取水样于烧杯中,加入高锰酸钾使呈紫红色;再加过氧化钠,使pH≈12,并迅速倒入蒸馏瓶中;将蒸馏瓶置于电炉上,进行常压蒸馏,弃去开始的几毫升蒸馏液。检测电导率应<2.0μS/cm。
2)电解水样。准确量取150mL蒸馏后的水样,加入1.2gNa2O2,搅匀,移入电解池中,插入电极,盖紧胶塞,并将电极串联,接通直流电源。电解开始时电流要小(3~5A),以防止气泡逸出时使水蒸汽损失。同时,要将电解水产生的具有爆炸性的氢氧混合物安全地引出室外。当电解液体积减小时,可加大电流至10A左右,随后又要逐步降低电流,注意适时调节,以避免在电极作用面积小时电流密度过大。当浓缩至10mL时,切断电源,取出电极,准确量出浓缩液体积(mL),计算浓缩倍数
3)减压蒸馏。将电解浓缩液全部移入50mL蒸馏瓶中,用酒精干冰冻结后抽真空。用调压器控制低温蒸馏,蒸出水的pH值介于7~8为合格。
4)样品配制和乳化。在20mL计数瓶中,准确加入12.0mL闪烁液及5.0mL减压蒸馏合格的水样。盖紧计数瓶盖,在38~42℃的水中乳化,充分摇匀,冷却后将瓶口密封。
5)测量。用低本底液体闪烁谱仪,在选定的工作条件下,将避光静置两天后的乳化试样进行测量。
分析结果的计算
按下式计算氚的浓度:
岩石矿物分析第四分册资源与环境调查分析技术
式中:氚的浓度,TU(氚单位,每1018个氢原子中的一个);C为样品总计数;t为样品总计数时间,min;B为本底计数率,min-1(cpm);V为计数用试样量,mL;CE为仪器计数效率,%, ,dpm为每分钟里变量;Rt为氚电解回收率, ;α为试样体积浓缩倍数;e-λt为氚衰变函数(表83.2氚的衰减系数表)。
表83.2 氚的衰减系数(T1/2=12.43a)
1dpm/g=139.44TU。
误差计算
岩石矿物分析第四分册资源与环境调查分析技术
方法分析误差,因样品含氚放射性强度,液体闪烁谱仪特性,测量时间的长短等条件而异。
㈢ 假期实践活动,朋友们告诉我一下水质检测的方法、原理、标准
所谓水质指标是用以评价一般淡水水域、海水水域特性的重要参数。可以根据这些参数对水质的类型进行分类,对水体质量进行判断和综合评价。水质指标已形成比较完整的指标体系。
许多水质指标是表示水中某一种或一类物质的含量,常直接用其浓度表示,有些水质指标则是利用某一类物质的共同特性来间接反映其含量。例如水中有机物质具有易被氧化的共同特性,可用其耗氧量作为有机物含量的综合性指标;还有一些水质指标是同测定方法直接联系的,例如混浊度,色度等用人为规定的并配制某种人工标准溶液作为衡量的尺度。水质指标按其性质不同,可分为物理的,生物的和化学的指标。关于生物指标,根据水生生物的组成(种类与数量)以及它们的生态学特征而提出的各项指标已在有关课程中介绍。本节概要讨论一下几项常用的水质物理指标的含义。对于化学指标的含义将在本书的其他有关部门章节中作有关深入的讨论,这里按测定所使用的不同方法作粗略的分类。
(一)水质的物理指标
水体环境的物理指标项 目颇多,包括 水温、渗透压、混浊度(透明度)、色度、悬浮固体、蒸发残渣以及其它感官指标如味觉、嗅觉属性等等。
1. 温度 温度是最常用的物理 指标 之一。由于水的许多物理特性、水中进行的化学过程和生物过程 都同 温度有关,所以它经 常是必须加以测定的。天然水的温度因水源的不同而异.地表水的温度与季节气候条件有关,其变化范围大约在0.1--30℃;地下水的温度则比较稳定,一般变化于8--12℃左右,而海水的温度变化范围为-2--30℃。
2. 嗅与味 被污染的水体往 往具有不正 常 的气味,用鼻闻到的称为嗅,口尝到的称为味。有时嗅与味 不能截然分开。常常根据水的气味,可以推测水中所含杂质和有害成分。水中的嗅与味的来 源可能有:水生植物或微生物的繁殖和衰亡;有机物的腐败分解;溶解气体H2S等;溶解的矿物盐或混入的泥土;工业废水中 的 各种 杂质 如 石油、酚等;饮用水消毒过程的余氯等。不同的物质有着不同的气味,例如湖 沼水因藻类繁生或有机物产生的鱼腥及霉烂气味;浑浊河水常含有泥土的涩 味;温泉水常有硫酸味;有些地下水的H2S气味;含溶解氧较多的带甜味;含有机物较多的也常具有甜味;水中含NaCl带有咸味,含MgSO4,Na2SO4等带有苦味;含CuSO4带有甜味,而Fe的水带有涩味。 人的感官分辨嗅与味,不可避免带有主观性。目前对嗅与味尚无完全客观的标准和检测的仪器,只有极清洁或 已消毒过的 水才可用口尝试。由于水温对水的气味有很大影响,所以测定嗅 与味常常在室温20℃和加热(40-50℃)两种情况下进行。 此外,有人提出 以臭气浓度及臭气强度指数来度量水质的嗅觉属性。臭气浓度(TO)=200/a,式中a为感觉到臭气的最小水样量(mL)。在给水水源的标准中,要求(TO)值低于3-5。 臭气 强度指数(PO)系指被测水样稀释到没有臭气为止时以百分率表示的稀释倍数。 PO与TO通常具有如下关系:PO=lgTO/lg2(合田健,1989)。
3.颜色与色度 天然水经常表现出各种颜色。湖沼水常有黄褐色、或黄绿色, 这往往是由腐殖质造成的。水 中悬浮泥沙和不溶解 的矿物质也长带有颜色,例如粘土使水呈黄色;铁的氧化物使水呈黄褐色; 硫化氢氧化析出的硫使水呈蓝色等等。各种水藻如球藻、硅藻等的繁殖使水 呈黄绿色、褐色等。根据水的颜色,可以推测水中杂质的数量和种类。色 度是对天然的或处理之后的各种用水进行水色测定时所规定的指标。目前世 界各国统一用氯化铂酸钾(K2PtCl6)和 氯 化钴(CoCl2.6H2O)配制的混合溶液作为色度的标准。
4.混浊度与透明度 水中若含有悬浮及胶体状态的物质,常会发生混浊现象。地表水的混浊是由泥沙、粘土、有机物造成的。地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙、粘土、有机物造成的。不同河流因流经地区的地质土壤条件不同,混浊程度可能有很大的差别。地下水一般比较清澈透明,但若水中含有Fe2+盐,与空气接触后就可能产生Fe(OH)3,使水呈棕黄色混浊状态;海洋在近岸和河口区由于陆地径流携带大量泥沙和其它有机物,水质比较混浊而远岸海区水区水质透明。
混浊度是一种光学效应,它表示光线透过水层时受到阻碍的程度。这种光学效应和和微粒的大小及形状有关。从胶体颗粒到悬浮颗粒都能产生混浊现象,其粒径的变化幅度是很大的。所有有相同悬浮物质含量的两种水体若颗粒粒径分级状况不同,其混浊程度就未必相等。浑浊度的标准单位是以不溶性硅如漂白土、高岭土在光学阻碍作为测量的基础,即规定1mgSiO2.L-1所构成的混浊度为1度。把预测水样与标准混浊度按照比浊法原理进行比较就可以测得其混浊度。
透明度是表示水体透明程度的指标。它与混浊度的意义恰恰相反。都表明水中杂质对透过光线的阻碍程度。若把某一方面白色或黑白相间的圆盘作为观察对象,透过水层俯视圆盘并调节圆盘深度至恰能看到为止,此时圆盘所在深度位置称为透明度。
5. 固体含量 天然水体中所含物质大部分属于固体物质,经常有必要测定其含量作为直接的水质指标。各种固体含量可以分为以下几类:(1)总固体。即水样在一定温度下蒸发干燥后残存的固体物质总量,也称蒸发残留物;(2)悬浮性固体。即将水样过滤①,截留物烘干后的残存的固体物质的量,也就是悬浮物质的含量,包括不溶于水的泥土、有机物、微生物等;(3)溶解性固体。即水样过滤后,滤液蒸干的残余固体量。包括可溶于水的无机盐类及有机物质。总固体量是悬浮固体和溶解性固体二者之和。此外还有可沉降固体,固体的灼烧减重等指标。各种固体含量的测定都是以重量法进行的,测定时蒸干温度对结果的影响很大。一般规定的确105--110℃,不能彻底赶走硫酸钙、硫酸镁等结晶水。不易得到固定不变的重量;若在180℃蒸干,所得结果虽比较稳定,但由于一些盐类如CaCl2 、Ca(NO3)2MgCl2、Mg(NO3)2等具有强烈的吸湿性,极易吸收空气中的水分,在称量时也不易得到满意的结果。因此测定的结果比较粗略。
(二)水质化学指标
利用化学反应、生物化学的反应及物理化学的原理测定的水质指标,总称为化学指标。由于化学组成的复杂性,通常选择适当的化学特性进行检查或作定性、定量的分析。根据不同的分析方法可以把化学指标归纳如下:
1.中和的方法 包括水体的碱度、酸度等;
2.生成螯合物的方法 如Ca2+ Mg2+及硬度等;
3.加热和氧化剂分解法 将含生物体在内的有机化合物的含量以加热分解时产生CO2的量[总有机碳(TOC);微粒有机碳(POC)]、分解时消耗的氧量[总耗氧量(TOD)]或消耗氧化的量[化学耗氧量(COD)]来表示的指标;
4.生物化学反应的方法论 以生物化学耗氧量(BOD)为代表,是测定微生物分解有机物时所需消耗的氧量,包括测定微生物在呼吸过程中产生的CO2的量以及利用脱氢酶等酶活性法来测定有效生物量等指标;
5.氧化还原反应及沉淀法。最典型为溶解氧含量及氯离子含量等指标。
6.电化学法。有水的电导率,氯化-还原电位(pE)以及包括pH在内的离子选择电极的各种指标,如F-、NH4+以及许多金属离子;
7.微量成分。以仪器分析为主要检测手段。包括分光光度法,原子吸收光谱法,气相、液相色谱法,中子活化分析法以及等离子发射光谱法等。指标项目众多,如生物营养元素、各种化学形态的重金属离子及非金属微量元素、微量有机物、水已的污染物(如有机农药、油类)以及放射性元素等等。 总之,系统了解各类水质指标的含义具有重要意义。因为对于任何水生生态系统环境都是通过对一系列的、经过严格选择的、具有典型意义代表性的指标进行调查或监测分析结果,而加以综合评价的。必须强调,水质的生物学指标的调查分析结果对于科学评价水环境质量越来越大越显示其重要性。象英、美、日等国对水环境的要求,都从生态学的观点出发,重视生物监测。例如英国泰晤士河由于进行了常时间的治理,1969年已有鱼群重新出现,其治理效果就是用已有碍100多种鱼类重新回到泰晤士河加以表征的;日本1970年将生物学水知判断法列入有关水环境质量指标中;我国现在已将细菌学指标列为部颁水环境质量标准。
二、 我国当前沿用的主要水质理化指标及测试系统
(一) 主要理化指标 当前许多国家都颁布了各自不同的水质质量标准,规定了为数繁多的指标项目。我国于1973年颁布了《工业“三废”排放试行标准》,规定了工业废水中有14项有害物质的最高排放浓度。1976年颁发《生活饮用水水质标准》,其中感官性指标有4项(色、混浊度、嗅与味、肉眼可见物);化学指标有8项(Ph、总硬度、铁、锰、铜、锌、挥发酚、阴离子合成洗涤剂);毒理学指标有8项(氰化物、砷、硒、汞、镐、六价铬、铅);细菌学指标有3项(细菌总数、大肠菌群、游离余氯)。1983年发布《地表水环境质量标准》,规定出20种监测项目的三级质量标准,其中包括pH、水温、色、嗅、溶解氧,生化需氧量,挥发性酚类、氮化物、砷、总汞、镉、六价铬、铅、铜、石油类、大肠菌群等。我国先行的《海水水质标准(GB3097-82)》规定的理化指标包括物理感官指标,化学感官指标和微生物指标计25项;《渔业水域水质标准(GB11607-89)》包括感官和化学指标34项。
水环境调查或监测分析项目在理化指标方面多根据各类水体目前和将来的用途而加以选择和确定的。在养殖生产和有关部门水生生物科学研究中,为了充分利用和改良或控制水的理化条件,常常必须对10多项常规指标进行分析,包括温度、含盐量(盐度)、溶解氧、pH、碱度、硬度、硝酸盐、亚硝酸盐、铵氮、总氮、磷酸盐、总磷、硅酸盐、化学耗氧量等等;对水环境的污染物质的调查中常按基础调查、检测性调查、专题性调查及应急性调查等多种不同类型的用途而选择不同的指标项目。淡水水体和海水水体常常也有所差异。
从国外报道各种类型的水质调查或监测标准来看,由于国情的不同,其侧重点各异。而且调查或监测指标的选择和确定问题本身也还有一个逐步深入和不断发展的过程,例如对污染指标随着新的化学物质的品种的增加、分析技术的发展,以及在流行病学研究中对致癌、致畸及致突变的生理生化过程的深入研究,监测或调查项目会不断的加以改变,方法也会逐步发展和完善。
(二) 测试系统 对水质理化指标进行的测试实验可采用现场测试、船上测试和陆上实验室测试三种方式。采用不同方式测试所得结果的确切程度是不同的,特别是深层水样的 采集和储存,其温度、压力产生变化,都将使化学平衡点产生变化。例如[HCO3-]/[CO32-]等离子成分的浓度比值以及溶解气体的含量等都回发生变化。;储存的水样,即使排除了容器污染和通过容器表面散失的可能性,水质也会因为悬浮物的凝聚沉降以及生物提的代谢过程、死亡分解过程等的影响而发生改变。
目前,可采用现场测试的项目越来越多,遥控遥感技术的发展使许多水质指标项目的测试可以字响当大的范围进行同步观测。但借助仪器的探头作高深度水域(特别是海洋)的现场测试常常遇到很多困难。加在现场测试仪器尚未能普及的情况下,水质理化指标测试工作常常必须先采样后在船上实验室或陆上实验室进行。
随着自动化分析技术的发展,水质指标的调查、监测分析已经逐步使用自动测试系统。该系统一般由采样装置,水质连续监测仪器,数据传输、记录及处理几部分组成,其特点是自动化、仪器化和连续性。目前已采用自动化试系统的有:水温、Ph、电导率、氧化还原电位、混浊度、悬浮物、溶解氧、COD、TOC、TOD、某些金属离子、氰化物等等。自动测试系统可避免人工采样所得数据的不全面性,大大缩短采样分析到获得结果之间的时间。但自动测试系统也有局限性,不能对大部分指标逐一单项进行测定,因为水质化学组成(尤其是污染物)复杂,组分价态、形态多变,干扰严重,需要一系列的化学预处理操作和各种高灵敏度的检测方法。因此,发展规律连续自动测试技术并和实验室(船上和陆上)采样分析技术相结合,是完善水质理化指标的一系列切实可行的途径
分给我吧
㈣ 水中氚的分析方法
楼主,您好。 1 主题内容与适用范围本标准规定了分析水中氚的方法。本标准适用于测量环境水(江、河、湖水和井水等)中的氚,本方法的探测下限为0.5Bq/L。2 方法提要向含氚水样中依次加高锰酸钾,进行常压蒸馏,碱式电解浓缩,二氧化碳中和,真空冷凝蒸馏。然后将一定量的蒸馏液与一定量的闪烁液混合,用低本底液体闪烁谱仪测量样品的活性。3 试剂除非另有说明,分析时均使用符合国家标准的分析纯试剂。3.1 高锰酸钾,KMnO4。3.2 2,5-二苯基恶唑,OC(C6H5)=NCH=CC6H5,简称PPO,闪烁纯。3.3 甲苯,C6H5CH3。3.4 1,4-[双-(5-苯基恶唑-2)]苯,[OC(C6H5)=CHN=C]2C6H4,简称POPOP,闪烁纯。3.5 氢氧化钠,NaOH。3.6 TritonX-100(曲吹通X-100),C8H17(C6H4)(OCH2CH2)10OH。3.7 标准氚水,浓度和待测试样尽量相当,误差±3%。3.8 无氚水,含氚浓度低于0.1Bq/L的水。3.9 二氧化碳。3.10 液氮。4 仪器和设备4.1 低本底液体闪烁谱仪,计数效率大于15%本底小于2cpm。4.2 分析天平,感量0.1mg,量程大于10g。4.3 蒸馏瓶,500mL。4.4 蛇形冷凝管,250cm。4.5 磨口塞玻璃瓶,500mL。4.6 容量瓶,1 000mL。4.7 样品瓶,聚乙烯或聚四氟乙烯,或石英瓶,20mL。4.8 电解槽,见附录B(参考件)。4.9 真空冷凝蒸馏收集瓶,见附录B(参考件)。4.10 井形电炉,见附录B(参考件)。4.11 直流电源,电压范围0~90V,连续可调,电流0~60A。4.12 真空泵,10L/min。4.13 湿度控制器,可调范围0~100℃。5 分析步骤5.1 蒸馏5.1.1 取300mL水样,放入蒸馏瓶(4.3)中,然后向蒸馏瓶中加入1g高锰酸钾(3.1)。盖好磨口玻璃塞子,并装好蛇形冷凝管(4.4),待用。5.1.2 加热蒸馏,将开始蒸出的几毫升蒸馏液弃去,然后将蒸馏液收集于磨口塞玻璃瓶(4.5)中。密封保存。5.2 电解浓缩5.2.1 先要调节阳极位置,使电解后剩下的溶液体积为8mL。5.2.2 将250mL蒸馏液(5.1.2),放入电解槽(4.8)中,并加入2.5g氢氧化钠(3.5)。5.2.3 将电解槽放入冷却水箱,通自来水冷却。然后连接线路,接通电源,并使起始电解电流为40~50A。进行电解。5.2.4 电解结束后,向电解槽缓慢地通入二氧化碳20min。 5.3 真空冷凝蒸馏5.3.1 把称重过的收集瓶(4.9),放入液氮中冷却5min后,将其与放在井形电炉(4.10)中的电解槽连接。然后打开收集瓶上的阀门,抽真空,并同时对电解槽加热,温度控制在100℃以内。冷凝蒸馏30min。5.3.2 再次称重收集瓶,确定其蒸馏液净重。5.4 制备试样5.4.1 配制溶剂以1份曲吹通X-100(3.6)与2.5份甲苯(3.3)的比例,配制适量溶剂,摇荡混合均匀后放置待用。5.4.2 配制闪烁液,将6.00gPPO(3.2)和0.30gPOPOP(3.4),放入1000mL容量瓶(4.6)中,用溶剂(5.4.1)溶解并稀释至刻度。摇荡混合均匀后放入暗箱保存。5.4.3 制备本底试样将无氚水按5.1步骤进行蒸馏,取其蒸馏液6.00mL放入20mL聚乙烯样品瓶中,再加入闪炼液(5.4.2)14.0mL,摇荡混合均匀后密封保存。5.4.4 制备待测试样取6.00mL蒸馏液(5.3.2)和14.0mL闪烁液(5.4.2),放入20mL聚乙烯样品瓶中,摇荡混合均匀后密封保存。5.4.5 制备标准试样取6.00mL标准氚水(3.7)和14.0mL闪烁液(5.4.2),放入到20mL聚乙烯样品瓶中,摇荡混合均匀后密封保存。6 测量把制备好的试样[包括本底试样(5.4.3),待测试样(5.4.4)和标准试样(5.4.5)],同时放入低本底液体闪烁谱仪的样品室中,避光12h。6.1 仪器准备调试仪器使之达到正常工作状态。6.2 测定本底计数率选定一确定的计数时间间隔进行计数。6.3 测定仪器效率 选用一确定计数时间间隔,对标准试样进行计数,求出标准试样的计数率,然后用下式计算仪器的计数效率:式中:E——仪器的计数效率,仪器的计数效率,(计数/分)/(衰变/分);仪器的计数效率, Nd——标准试样计数率,计数/分;标准试样计数率,计数/分; Nb——本底试样计数率,计数/分;本底试样计数率,计数/分; D——加入到标准试样中氚的衰变数,衰变/分。6.4 测量样品 选用一确定的计数时间间隔,对待测样品进行计数。7 分析结果的计算 计算水中氚的放射性浓度公式为式中:A——水中氚的放射性浓度,Bq/L;V1——电解浓缩前水样的体积,mL;Vf——电解浓缩后水样的体积,mL;Vm—-测量时所用水样的体积,mL;E——仪器对氚的计数效率,(计数/分)/(衰变/分);Ng——待测试样的总计数率,计数/分;K——单位换算系数,6.00×10-2(1(1衰变/分)/(BqmL);(1 Re——电解浓缩回收率;Nb——本底试样的计数率,计数/分。 注:用标准氚水,按电解浓缩步骤进行电解,然后进行制样测量,用Re=Df/Di算出Re值,式中Df是电解前水样中氚的衰变数;Df是经电解浓缩后水中氚的衰变数。8 精密度 方法的重复性和再现性。水平值(Bq/L)重 复 性再 现 性SRγSrR0.632.845.420.0620.310.330.170.870.930.240.560.700.681.581.97本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试佯所作两个单次测试,结果之间的差值超过重复性,平均来说20次中不多于1次。 本方法在正常和正确操作情况下,由两名操作人员,在不同实验室内,对相同试样所作两个单次测试,结果之间差值,超过再现性,平均来说20次中不多于1次。 如果两个单次测试结果之间的差值超过了相应的重复性和再现性数值,则认为这两个结果是可疑的。注:本精密度数据是在1987年和1988年由7个实验室对3个水平的试样所作的试验中确定的。9 误差 分析结果的相对标准误差由下式确定:式中:σm——分析方法的相对标准偏差;Na——待测试样的净计数率,计数/分;——待测试样的净计数率,计数/分; Nb——本底试样的计数率,计数/分;——本底试样的计数率,计数/分; ts——待测试样的计数时间,min;——待测试样的计数时间,min; tb——本底试样的计数时间,min;——本底试样的计数时间,min; σRe——电解浓缩回收率的标准偏差;——电解浓缩回收率的标准偏差; σe——仪器对氚的计数效率的标准偏差。——仪器对氚的计数效率的标准偏差。 附录A 正确使用标准的说明。详情请参考国家标准物质网www.rmhot.com(参考件)A1 如果待测试样中氚的浓度较高,或仪器的灵敏度足够高,用仪器直接测量,能得到满意的结果时,可以省去电解浓缩一步,样品经常压蒸馏,制样后,直接用仪器测量即可。A2 电解浓缩时,应首先调节好阳极位置,正确的调节方法是,先在电解槽中,加入8mL含1%(m/V)氢氧化钠溶液,然后将阳极插入电解槽中,边上、下调节阳极位置,边用万用表测量阴阳极间的电阻,当获得一个突然变小或变大的电阻值时,再仔细调节一下,在突然变化的那个位置上,用阳极上的两个螺母,把阳极管固定在法兰盘上,阳极位置便可调节好了。A3 电解浓缩时,如果采用比附录B中的电解槽的阴极面积大或者小的阴极时,则电解的起始电流,可按阴极电流密度控制在0.1-0.2A/cm2范围值,计算出新采用的电解槽的起始电流范围。A4 在操作过程中,例如制备试样、蒸馏等每一可能引起样品间交叉污染的步骤中,要注意避免交叉污染。操作要按先低水平,后高水平顺序进行等。A5 电解浓缩回收率Re与电解槽的电极材料,电解质,冷却水温度,电流密度,体积浓缩倍数以及电解方式等有关。采用减容电解方式(即本标准采用的方式)则Re=(Vf/V4)1/β,式中的β是氚的电解分离系数。如果上述条件有任何一个发生了改变,则原来的见和β值不能再使用,这时应该用标准氚水,按电解步骤进行电解,重新确定新的参数Re和β值。如果只是冷却水温度发生了变化,可按每升高1℃,β降低1.3%,对β进行修正,再由β算出Re,一般可以不必重作实验。冷却水温度变化多少度,就该修正β和Re值,这要根据测量误差的要求而定。 A6 如果标准氚水比待测试样中的氚放射性浓度高出几个数量级,例如2.21×106dpm/g误差±3%的标准氚水,应将标准氚水进行稀释后,方可使用。稀释方法是用分析天平(4.2)精确地称取一定量标准氚水,一般是0.18左右,加入到一定容积(如1000mL的)容量瓶中,然后再用无氚的蒸馏水稀释至刻度,摇荡混合均匀,按下式算出稀释后标准氚水的比放射性活度:式中:C——比放射性活度,(衰变/分)/mL;DS——加入到容量瓶中的标准氚水绝对活度,衰变/分;VS——容量瓶的容积,mL。
㈤ 如何检测水中重金属含量,水质重金属快速检测方法
快速检测方法很多
方法一,使用便携式仪器检测
方法二,使用试纸法快速检测水中重金属
方法三,检测重金属污染程度的可能性.在CA培养基内分别加入不同浓度的锌、铜、铅等重金属,再将水霉菌菌株移至此些培养基上培养.由实验结果得知,培养基内含500 ppm硫酸锌、40 ppm硫酸铜与500ppm硝酸铅时,皆会使水霉无法生长;而含有450 ppm硫酸锌、30 ppm硫酸铜与450ppm硝酸铅时,水霉虽生长不佳,但仍可生长、繁殖.
由于水霉菌在适当湿度、温度并提供适量光照的环境下生长十分快速,约1~2日,所以可以十分快速检验水中重金属的含量,加上菌株容易取得、培养材料十分便宜,因此,利用水霉或检测水中水霉含量即可作为检测重金属污染程度一项十分经济、快速、简便且准确的参考指标之一.至于有关水霉菌对各种重金属的灵敏度与如何推广应用水霉来检测水中,甚至土壤中重金属污染程度则有待进一步试验和改善.