⑴ 逆矩阵的简单求法
矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.
1.利用定义求逆矩阵
定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.
2.初等变换法
3.伴随阵法
例:
此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.
若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大。
4.分块矩阵求逆法
4.1.准对角形矩阵的求逆
例:
4.2.准三角形矩阵求逆
其它公式:
此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.
⑵ 三阶矩阵的逆矩阵怎么求
首先用待定系数法,求矩阵的逆阵。
举例:
矩阵A=
1 2
-1 -3
假设所求的逆矩阵为
a b
c d
则
从而可以得出方程组
a+2c=1
b+2d=0
-a-3c=0
-b-3d=1
解得
a=3
b=2
c=-1
d=-1
4
所以A的逆矩阵A⁻¹=
3 2
-1 -1
(2)三角矩阵求逆矩阵简单方法扩展阅读:
关于逆矩阵的性质:
1、矩阵A可逆的充要条件是A的行列式不等于0。
2、可逆矩阵一定是方阵。
3、如果矩阵A是可逆的,A的逆矩阵是唯一的。
4、可逆矩阵也被称为非奇异矩阵、满秩矩阵。