㈠ PAC(聚合氯化铝)浓度的测定方法有哪些
1、称重:去一定量炉渣粉碎,称取m1克
2、将试样用足量0.1molNaOH溶液处理
3、过滤,水洗滤渣、容器三次,洗液也倒入滤液中.
4、加入多量盐酸溶液,直到沉淀完全溶解.
5、向滤液滴加氨水直到不再生成沉淀.
6、滤出到的沉淀并用去离子水冲洗三次,充分干燥后称重得重量m2
得到的是干燥的Al(OH)3
2Al(OH)3
-
Al2O3
78×2
102
Al2O3含量:(m2×102/156)/m1×100%=Al2O3的百分含量.
㈡ 聚合氯化铝的盐基度测定为什么空白值比样品值低,空白值是 22.15,样品值是24,这种情况怎么计算盐基度
空白值是加完盐酸,氟化钾后用氢氧化钠滴定.
加入聚铝后,是要消耗盐酸的,所以再用氢氧化钠滴定数值肯定要变低.
这是返滴定.然后根据公式算就行了.
出现这种情况,说明你测的样品不是聚铝.可以换个样品测一次.
盐基度是聚合氯化铝的一很重要的衡量指标,那如何来测定呢?华泉专家为大家详细讲述国标聚合氯化铝盐基度的测定。
聚合氯化铝盐基度测定方法提要:在试样中加入定量盐酸溶液,以氟化钾掩蔽铝离子,以氢氧化钠标准滴定溶液滴定。
1、试剂和材料
1.1盐酸(GB/T622):c(HCI)约0.5mol/L溶液;
1.2氢氧化钠(GB/T629);c(NaOH)约0.5mol/L标准滴定溶液;
1.3酚酞(GB/T10729):10g/L乙醇溶液:
1.4氟化钾(GB/T1271):500g/L溶液。
移取25.OO mL试液A,置于250mL磨口瓶中,加20.00mL盐酸标准溶液,接上磨口玻璃冷凝管,煮沸回流2min,冷却至室温。转移至聚乙烯杯中,加入20mL氟化钾溶液,摇匀。加入5滴酚酞指示液,立即用氢氧化钠标准滴定溶液滴定至溶液呈现微红色即为终点。同时用不含二氧化碳的蒸馏水做空白试验。
聚合氯化铝盐基度以质量分数w3计,数值以%表示,按下式计算
式中:
Vo—空白试验消耗氢氧化钠标准滴定溶液的体积的数值,单位为毫升(mL);
v—测定试样消耗氢氧化钠标准滴定溶液的体积的数值,单位为毫升(mL);
c—氢氧化钠标准滴定溶液的实际浓度的准确数值,单位为摩尔每升(mol/L);
m—试料的质量的数值,单位为克(g);
w1—测得的氧化铝的质量分数,%;
M—氢氧根[OH-]的摩尔质量的数值,单位为克每摩尔(g/mol)(M=16.99);
0 5293—Al2O3折算成Al的系数;
8.994—的摩尔质量,单位为克每摩尔(g/mol)。
聚合氯化铝盐基度测定允许差:取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值不大于2.0%。
㈢ 聚合氯化铝盐基度测定,消耗氢氧化钠溶液:样品值24.6ml,空白值22.1ml,请问怎么计盐基度
因为盐基度影对聚铝的结构形态、聚合度、絮凝能力、储存稳定性、PH值等具有很大影响,所以客户在购买后可对聚合氯化铝盐基度进行测定是否达标,方法如下:
一、称取500g氟化钾,以200mL不含二氧化碳的蒸馏水溶解后,稀释至1000Ml.加入2滴酚酞指示液并用氢氧化钠溶液或盐酸溶液调节溶液呈微红色,滤去不溶物后贮于塑料瓶中;
二、移取25.00mL试液A,置于250mL磨口瓶中,加20.00mL盐酸标准溶液,接上磨口玻璃冷凝管,煮沸回流2min,冷却至室温。转移至聚乙烯杯中,加入20mL氟化钠溶液,摇均。加入5滴酚酞指示液,立即用氢氧化钠标准滴定溶液滴定至溶液呈现微红色即为终点。同时用不含二氧化碳的蒸馏水做空白试验。
三、代入公式对聚合氯化铝盐基度进行计算:
其中Vo---空白试验消耗氢氧化钠标准滴定溶液的体积的数值(mL);
V----测定试样消耗氢氧化钠标准滴定溶液的体积的数值(mL);
c----氢氧化钠标准滴定溶液的实验浓度的准确数值(mol/L);
m---试料的质量的数值,单位(g);
W1---氧化铝的质量分数,%;
M---氢氧根的摩尔质量的数值,单位(g/mol)。
㈣ 聚合氯化铝PAC 怎么 检验。铝含量。。用什么仪器设备。
如果聚合氯化铝是用来处理自来水的,则须用饮水级检验标准GB15892-2009;如果聚合氯化铝是用来污水处理的,则用工业级标准GB/T22627-2008;测定铝(铁)含量是用常规的滴定分析,需要酸度滴定管及化验所需的药剂就可以了;标准在网络里可以下载;
㈤ 溶解好的PAC(聚合氯化铝)怎样去测试它的浓度
您好,不是处理能力变小了,而是您用的产品质量下降了。
我们是生产聚合氯化铝的。可以了解下我们的。
㈥ 聚合氯化铝检测方法
1、检测指标:
2、检测方法:
聚合氯化铝国标
4.2氧化铝(AI2O3)含量的测定
4.2.1方法提要
在试样中加酸使试样解聚。加入过量的乙二胺四乙配二钠溶液,使其与铝及其他金属离络合。用氯化锌标准滴定溶液滴定剩余的乙二胺四乙酸二钠。再用氟化钾溶液解析出络合铝离子,用氯化锌标准滴定溶液滴定解析出的乙二胺四乙酸二钠。
4.2.2试剂和材料
4.2.2.1硝酸(GB/T626):1+12溶液;
4.2.2.2乙二胺四乙酸二钠(GB/T1401):c(EDTA)约0.05mol/L溶液。
4.2.2.3乙酸钠缓冲溶液:
称取272g乙酸钠(GB/T
693)溶于水,稀释至1000mL,摇匀。
4.2.2.4氟化钾(GB/T1271):500g/L溶液,贮于塑料瓶中。
4.2.2.5硝酸银(GB/T670):1g/L溶液;
4.2.2.6氯化锌:c(ZnCI2)=0.0200mol/L标准滴定溶液;
称取1.3080g高纯锌(纯度99.99%以上),精确至0.0002g,置于100mL烧杯中。加入6~7mL盐配(GB/T
622)及少量水,加热溶解。在水浴上蒸发到接近干涸。然后加水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.2.2.7二甲酚橙:5g/L溶液。
4.2.3分析步骤
称取8.0~8.5g液体试样或2.8~3.0g固体试样,精确至0.0002g,加水溶解,全部移入500mL容量瓶中,用水稀释至刻度,摇匀。用移液管移取20mL,置于250mL锥形瓶中,加2mL硝酸溶液(4.2.2.1),煮沸1min。冷却后加入20mL乙二胺四乙酸二钠溶液(4.2.2.2),再用乙酸钠缓冲溶液(4.2.2.3)调节pH约为3(用精密pH试纸检验),煮沸2min。冷却后加入10mL乙酸钠缓冲溶液(4.2.2.3)和2~4滴二甲酚橙指示液(4.2.2.7),用氯化锌标准滴定溶液(4.2.2.6)滴定至溶液由淡黄色变为微红色即为终点。
加入10mL氟化钾溶液(4.2.2.4),加热至微沸。冷却,此时溶液应呈黄色。若溶液呈红色,则滴加硝酸(4.2.2.1)至溶液呈黄色。再用氯化锌标准滴定溶液(4.2.2.6)滴定,溶液颜色从淡黄色变为微红色即为终点。记录第二次滴定消耗的氯化锌标准滴定溶液的体积(V)。
4.2.4分析结果的表述
以质量百分数表示的氧化铝(AI2O3)含量(x1)按式(1)计算:
x1=Vc×0.05098/m×20/500
×
100=Vc×127.45/m(1)
式中:V——第二次滴定消耗的氯化锌标准滴定溶液的体积mL;
C——氯化锌标准滴定溶液的实际浓度,mol/L;
m——试料的质量,g;
0.050
98——与1.00mL氯化锌标准滴定溶液[c(ZnCI2)=1.000mol/L]相当的以克表示的氧化铝的质量。
4.2.5允许差
取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值,液体产品不大于0.1%,固体样品不大于0.2%。
4.3盐基度的测定
4.3.1方法提要
在试样中加入定量盐酸溶液,以氟化钾掩蔽铝离子,以氢氧化钠标准滴定溶液滴定。
4.3.2试剂和材料
4.3.2.1盐酸(GB/T622):c(HCI)约0.5mol/L溶液;
4.3.2.2氢氧化钠(GB/T629):c(NaOH)约0.5mol/L标准滴定溶液;
4.3.2.3酚酞(GB/T10729):10g/L乙醇溶液;
4.3.2.4氟化钾(GB/T1271):500g/L溶液。
称取500g氟化钾,以200mL不含二氧化碳的蒸馏水溶解后,稀释至1000mL。加入2mL酚酞指示液(4.3.2.3)并用氢氧化钠溶液(4.3.2.3)或盐酸溶液(4.3.2.1)调节溶液呈微红色,滤去不容物后贮于塑料瓶中。
4.3.3分析步骤
称取约1.8g液体试样或约0.6g固体试样,精确到0.0002g。用20~30mL水移入250mL锥形瓶中。再用移液管加入25mL盐酸溶液。盖上表面皿,在沸水浴上加热10min,冷却至室温。加入25mL氟化钾溶液(4.3.2.4),摇匀。加入5滴酚酞指示液(4.3.2.3),立即用氢氧化钠标准滴定溶液(4.3.2.2)滴定至溶液呈现微红色即为终点。同时用不含二氧化碳的蒸馏水作空白试验。
4.3.4分析结果的表述
以百分比表示的盐基度(x2)按式(2)计算:
x2
=
(V0-V)c×0.01699/mx1/100×
100
=
(V0-V)c×169.9/mx1(2)
式中:V0——空白试验消耗氢氧化钠标准滴定溶液的体积,mL;
V——测定试样消耗氢氧化钠标准滴定溶液的体积,mL;
c——氢氧化钠标准滴定溶液的实际浓度,mol/L;
m——试料的质量,g;
x1——4.2条测得的氧化铝含量,%;
0.01699——1.00mL氢氧化钠标准滴定溶液[c(NaOH)=1.000mol/L]相当的以克表示的氧化铝(AI2O3)的质量。
4.3.5允许差
取平行测定结果的算术平均值作为测定结果,平行测定结果的绝对差值不大于2.0%。
4.4水不溶物含量的测定
4.4.1仪器、设备
电热恒温干燥箱:10~200ºC。
4.4.2分析步骤
称取约10g液体试样或约3g固体试样,精确至0.01g。置于1000mL烧杯中,加入500mL水,充分搅拌,使试样最大限度溶解。然后,在布氏漏斗中,用恒重的中速定量滤纸抽滤。
将滤纸连同滤渣于100~105ºC干燥至恒重。
4.4.3分析结果的表述
以质量百分数表示的水不溶物含量(x3)按式(3)计算:
x3=
m1-m2/m
×
100(3)
式中:m1——滤纸和滤渣的质量,g;
m2——滤纸的质量,g;
m——试料的质量,g;
4.4.4允许差
取平行测定结果的算术平均值作为测定结果。
平行测定结果的绝对差值,液体样品不大于0.03%,固体样品不大于0.1%。
4.5pH的测定
4.5.1试剂和材料
4.5.1.1pH=4.00的苯二甲酸氢钾(GB
6857)pH值标准溶液;
4.5.1.2pH=9.18的四硼酸钠(GB
6856)pH值标准溶液;
4.5.2仪器、设备
4.5.2.1酸度计:精度0.1pH;
4.5.2.2玻璃电极;
4.5.2.3甘汞电极。
4.5.3分析步骤
称取1.0g试样,精确至0.01g。用水溶解后,全部转移到100mL容量瓶中,稀释至刻度,摇匀。
用pH4.00及pH9.18的标准溶液进行酸度计定位。再将试样溶液倒入烧杯,将甘汞电极和玻璃电极浸入被测溶液中,测其pH值(1min内pH值的变化不大于0.1)。
4.6硫酸根(SO42-)含量的测定(重量法)
4.6.1方法提要
在0.04~0.07mol/L的盐酸介质中,硫酸盐与氯化钡反应生成硫酸钡沉淀,将沉淀灰化灼烧后,称重即可计算出硫酸根的含量。
4.6.2试剂和材料
4.6.2.1盐酸(GB/T622):1+23溶液;
4.6.2.2氯化钡(GB/T652):50g/L溶液;
4.6.2.3硝酸银(GB/T670):1g/L溶液;
4.6.3分析步骤
称取约1.8g液体试样或约0.6g固体试样,精确至0.001g。置于是400mL烧杯中,加入200mL水和35mL盐酸溶液(4.6.2.1)煮沸2min。趁热缓慢滴加10mL氯化钡溶液(4.6.2.2),继续加热煮沸后冷却放置8h
以上。用慢速定量滤纸过滤,用热蒸馏水洗涤至滤液无CI-[用硝酸银溶液(4.6.2.3)检验]。将滤纸与沉淀置于已在800ºC下恒重的坩埚内,在电炉上灰化后移至高温炉内,于800±25ºC下灼烧至恒重。
4.6.4分析结果的表述
以质量百分数表示的硫酸根(SO42-)含量(x4)按式(4)计算:
x4=(m1-m2)×0.4116/m×
100=(m1-m2)×41.16
/
m(4)
式中:m1——硫酸钡沉淀和坩埚的质量,g;
m2——坩埚的质量,g;
m——试料的质量,g;
0.4116——硫酸钡换算成硫酸根的系数。
4.6.5允许差
取平行测定结果的算术平均值作为测定结果,平行测定结果的绝对差值不大于0.1%。
4.7氨态氮(N)含量的测定
4.7.1方法提要
在试样中加入碳酸钠溶液使试样在pH小于7
的条件下均相沉淀,取其上层清液用钠氏比色法测定氨态氮。
4.7.2试剂和材料
4.7.2.1硫酸(GB/T625):1+35溶液;
4.7.2.2碳酸钠(GB/T639):30g/L溶液;
4.7.2.3酒石酸钾钠(GB/T1288):50g/L溶液;
4.7.2.4无氨蒸馏水;
4.7.2.5氨态氮标准储备溶液:1.00mL溶液中含0.1mgN;
4.7.2.6氨态氮标准溶液:1.00mL溶液含有0.010mgN;
用移液管移取10mL氨态氮标准储备溶液(4.7.2.5),移入100mL容量瓶中,用无氨蒸馏水平线(4.7.2.4)稀释至刻度,摇匀。此溶液用时现配。
4.7.2.7纳氏试剂。
4.7.3仪器、设备
分光光度计。
4.7.4分析步骤
4.7.4.1工作曲线的绘制
a.在六只50mL比色管中依次加入氨态氮标准溶液(4.2.7.6)0、2.00、4.00、6.00、8.00、10.00mL,加入无氨蒸馏水(4.7.2.4)至刻度。
b.加入1mL酒石酸钾钠溶液(4.7.2.3),塞紧摇匀。然后再加入2mL
纳氏试剂(4.7.2.7)
,塞紧摇匀。静置显色10~15min。
c.在波长10625px处,用25px吸收池,以试剂空白为参比,测定吸光度。
d.以氨态氮含量(µg)为横坐标,对应的吸光度为纵坐标,绘制工作曲线。
4.7.4.2测定
称取约10g液体试样或约3.3.g固体试样,精确至0.01g。用无氨蒸馏水(4.7.2.4),溶解后移入100mL容量瓶中,用无氨蒸馏水(4.7.2.4)稀释至刻度,摇匀。用移液管移取5mL此溶液,置于100mL容量瓶中,加入1.5mL硫酸溶液(4.7.2.1)
和20mL无氨蒸馏水(4.7.2.4)
摇匀。加入5mL碳酸钠溶液(4.7.2.2)
再摇匀。用无氨蒸馏水(4.7.2.4)稀释至刻度,摇匀后倒入干净干燥的100mL量筒内静置2h。
移取量筒内50mL上层清液置于50mL
比色管中,按工作曲线的绘制(4.7.4.1)中b、c步骤操作,测定吸光度。
4.7.5分析结果的表述
以质量百分数表示的氨态氮(N)含量(x5)按式(5)
计算:
x5=
mn×10-6/m
×
5/100
×
5/100
×
100
=
mn×0.004/m(5)
式中:mn——从工作曲线上查得的氨态氮含量,µg;
m——试料的质量,g;
4.7.6允许差
取平行测定结果的算术平均值作为测定结果;平行测定结果的绝对差值,液体样品不大于0.001%,固体样品不大于0.002%。
4.8砷含量的测定
4.8.1方法提要
在酸性介质中,将砷还原成砷化氢气体,用二乙基二硫代氨基甲酸银一三乙基胺三氯甲烷吸收液吸收砷化氢气体,形成紫红色物质,用光度法测定。
4.8.2试剂和材料
4.8.2.1
无砷锌(GB/T2304);
4.8.2.2三氯甲烷(GB/T682);
4.8.2.3硫酸(GB/T625):1+1溶液;
4.8.2.4碘化钾(GB/T1272):150g/L溶液;
4.8.2.5氯化亚锡盐酸溶液:
将40g氯化亚锡(GB/T
638)溶于100mL盐酸(GB/T
622)中。保存时可加入几粒金属锡,贮于棕色瓶中。
4.8.2.6二乙基二硫代氨基甲酸银一三乙基胺三氯甲烷吸收液:
称取1.0g二乙基二硫代氨基甲酸银,研碎后,边研磨边加入100mL三氯甲烷(4.8.2.2)。然后加入18mL三乙基胺,再用三氯甲烷(4.8.2.2)稀释至1000mL
,摇匀。静置过夜。用脱脂棉过滤,保存于棕色瓶中,置冰箱中保存。
4.8.2.7砷标准储备溶液1.00mL溶液中含0.1mgAs;
4.8.2.8砷标准溶液:1.00mL溶液中含0.0025mgAs;
移取5mL砷标准储备溶液(4.8.2.7),移入200mL容量瓶中,用水稀释至刻度,摇匀。此溶液用时现配。
4.8.2.9乙酸铅脱脂棉。
4.8.3仪器、设备
4.8.3.1分光光度计;
4.8.3.2定砷器:符合GB/T6102中第5.3条之规定。
4.8.4
分析步骤
4.8.4.1
工作曲线的绘制
a.
在6个干燥的定砷瓶中,依次加入0、1.00、2.00、3.00、4.00、5.00mL砷标准溶液(4.8.2.8),再依次加入30、29、28、27、26、25mL水使溶液总体积为30mL。
b.在各定砷瓶中加入4mL硫酸溶液(4.8.2.3),2mL碘化钾溶液(4.8.2.4)和2mL氯化亚锡盐酸溶液(4.8.2.5),摇匀。静置反应20min。再各加入5±0.1g无砷锌(4.8.2.1),立即将塞有乙酸铅脱脂棉(4.8.2.9)并盛有5.0mL二乙基二硫代氨基甲酸银一三乙基胺三氯甲烷吸收液(4.8.2.6)的吸收管装在定砷瓶上,反应50min。取下吸收管(勿使液面倒吸),用三氯甲烷(4.8.2.2)将吸收液补充至5.0mL,混匀。
c.在波长510mm处,用25px吸收池,以试剂空白为参比,测定吸光度。
d.以砷含量(µg)为横坐标,对应的吸光度为纵坐标,绘制工作曲线。
4.8.4.2试样溶液的制备
称取约10g液体试样或约3.3g固体试样,精确至0.01g,置于100mL蒸发皿中。加入10mL硫酸(4.8.2.3),在沸水浴上蒸至近干。冷却,以热水溶解(如有不溶物应过滤除去),再移入100mL容量瓶中,用水稀释至刻度,摇匀。此保留液A用于锰、六价铬、汞的测定。
移取10mL试样溶液(4.8.4.2)于定砷瓶中,加入20mL水。然后按工作曲线的绘制(4.8.4.1)中的b、c步骤操作,测定吸光度。
4.8.5分析结果的表述
以质量百分数表示的砷含量(x6)按式(6)计算:
x6=
mn×10-6
/
m×10/100
×100
=
mn×0.001
/
m(6)
式中:mn——从工作曲线上查得的砷含量,µg;
m——试料的质量,g;
4.8.6允许差
取平行测定结果的算术平均值作为测定结果;
平行测定结果的绝对差值,液体样品不大于0.0001%,固体样品不大于0.0002%。
参考资料:http://wenku..com/link?url=-A-re3Jsqj4qnsAw4c2VtyamzCshX73n-_4nyyGC
㈦ 如何简单检测聚氯化铝质量
聚合氯化铝简称PAC,通常也称作碱式氯化铝或混凝剂等,颜色呈黄色、深褐色、深灰色树脂状固体。该产品有较强的架桥吸附性能,在水解过程中,伴随发生凝聚、吸附和沉淀等物理化学过程。聚合氯化铝与传统无机混凝剂的根本区别在于传统无机混凝剂为低分子结晶盐,而聚合氯化铝的结构由形态多变的多元羟基络合物组成,为无定形的无机高分子,因而聚合氯化铝表现出许多不同于传统混凝剂的特异混凝功能。用铝酸钙调整法生产的PAC产品,盐基度(碱化度)可大幅度提高,生产和使用的经济效益非常明显,盐基度从65%提高到92%,生产原料成本可降低10%,使用成本可降低40%。净水效果优于其它生产工艺的同类产品。
要想检测聚合氯化铝的产品质量,还可以通过水不溶物来判定。取矿泉水瓶一个,灌满水。取适量的待测聚合氯化铝放入水瓶中,旋盖用力摇晃直至聚合氯化铝完全溶解。然后静置一个小时,观察瓶底水不溶物的沉积量,越少越好。