⑴ 小学数学中解决问题的策略有哪些
要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。
一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。
二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。
关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。
⑵ 小学数学解决问题的思路和方法
小学数学解决问题的思路和方法如下:
1、形象思维方法
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。
公式法:运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
解题技巧:
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2. 特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
⑶ 小学数学解决问题方法大全
小学数学解决问题的 方法 有哪些?解决问题需要注意什么问题?要抓住什么要点?下面是我为大家整理的关于小学数学解决问题 方法大全 ,希望对您有所帮助。欢迎大家阅读参考学习!
1小学数学解决问题方法大全
(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。
读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。
(2)把“大数”化“小”。
例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24 页,平均每天看8 页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。
(3)联系生活,想象情境。
让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。
(4)列表、画图。
表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。
2解决问题方法
(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。
(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。
(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。
(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。
(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。
3解决问题方法
1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。
2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的 创新思维 、求异思维。
4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。
4解决问题方法
(1)合理强化。
在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。
及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。
(2)分解强化。
为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。
(3)顺向加工策略。
顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。
(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式V = 13Sh ,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。
相关 文章 :
1. 小学数学解决问题策略
2. 小学数学教学方法有哪些问题
3. 小学数学的19种学习方法
4. 小学数学应用题解题方法
5. 小学数学学好的方法和技巧
⑷ 小学数学解决问题如何教更有效
小学数学中解决问题的方法很多,如分析法、归纳法、倒推法等等,应灵活应用。常用的方法是前两种,但分析法较为常见,我们都叫它为顺藤摸瓜法,即从问题入手,根据问题找条件。倒推法是指有些问题顺向无法解决,只有逆向思考才能解决,如:一堆煤,第一天烧了它的1/7,第二天烧了剩下的1/5,第三天烧了剩下的1/3,第四天烧了剩下的1/2,还剩6吨,这堆煤一共多少吨?
无论什么法,兴趣才是最好的老师,只有提高学生的数学学习兴趣,才能达到理想的教学效果。
⑸ 小学解决应用题的方法有哪些
可分为如下几类:单位“1”的问题,百分数问题,出粉率、出油率等相关问题,比的应用题,圆的应用题,列方程解应用题,整数和小数解应用题,工程问题,用比例解决问题,圆柱圆锥问题。
下面分类讨论:
一、单位“1”已知用乘法。比如:
二.单位“1”未知用除法。比如:
1、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
2、一缸水,用去1/2和5桶,还剩2/5,这缸水有多少桶?
解题思路:1.一般都是先找出题中的单位“1”,可以让学生圈出来。基本 在“比”、“是”“……的”等这类字的后面。
2.判断单位“1”已知还是未知。已知用乘法,未知用除法。
三、用百分数解决问题。比如:
解题思路:百分数实际上也是找单位“1”的题目。跟上个题型是换汤不换药的。
四、出粉率、出油率等相关问题。比如:
1、2千克大豆能榨油1800克,大豆的出油率是多少?
2、六(1)班星期一来了50人,有2人请假,他们班的出勤率是多少?
3、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦多少吨?如果有小麦30吨,可以磨出面粉多少吨?
解题思路:这类型有个万能公式:
(出油量/出勤量/出粉量)÷总量=出油率/出勤率/出粉率
五、比的应用题。比如:
解题思路:熟记长、正方形面积、体积公式。
六、圆的应用题。比如:
1、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
2、一只挂钟的分针长20厘米,经过1小时后,这根分针的尖端所走的路程是多少厘米?扫过的面积是多少平方厘米?
3、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?
解题思路:熟记圆环周长、面积公式,熟记圆周长、面积公式。
七、列方程解决问题。比如:
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、父亲今年的年龄是儿子年龄的4倍,8年后父亲年龄与儿子年龄的和是61,父亲和儿子今年各多少岁?
3、甲乙两地间的铁路长480千米,客车和货车同时从两地相对开出,经过4小时相遇。已知客车每小时行65千米,货车每小时行多少千米?
解题思路:如果问题又是单位“1”,就设它为X,另一个量可以用X表示出来,再找一个题中没有用过的两个量之间的等量关系,即可列出方程。还要注意要会解方程。
八、整数和小数应用题
解题思路:根据总量不变去做。
九、工程问题。比如:
1、一项工程单独一个队做,甲队15天完成,乙队45天完成。两队合做多少天完成?
2、加工一批机器零件,甲车间要10天完成,乙车间要15天完成,丙车间要20天完成。三个车间同时加工,多少天完成?
3、修一段路,甲队要20天完成,乙队要30天完成。两队同时修,多少天完成3/5?
4、一件工作,张师傅要8天完成,李师傅3天完成了1/4,两位师傅合做,多少天可以完成?
解题思路:以上4个题目都未给出总量,但总量又是解题关键,所以可以将总量看作“1”来解题。如果学生较难理解“1”,可以将总量设置一个具体的量。比如第1题,可以设总量为10或者100这种比较特殊的值。因为无论总量是几,都不会影响最后的结果。
十、用比例解决问题、比如:
解题思路:熟记比例尺的公式。
十一、圆柱圆锥问题。比如:
1.一个圆柱形,侧面展开是一个边长为12.56厘米的正方形,这个圆柱形的底面积和侧面积分别是多少平方厘米?
2.把一个长2米,底面半径为4分米的圆柱木料截成4段,表面积会增加多少平方厘米?
3、一个圆柱形玻璃杯底面半径是10厘米,里面装有水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)
4、等底等高的圆柱和圆锥的体积之和是72cm³,圆锥的体积各是多少?
5、等底等高的圆柱体积比圆锥体积大28cm³,圆柱的体积是多少?
解题思路:画图,熟记公式。
⑹ 小学数学问题解决策略有几种
小学生数学问题解决策略有:作图解决问题的策略、列举信息的策略、动手做的策略、尝试的策略等。教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去。
1、作图解决问题的策略
线段图在解答分数问题时的作用是显而易见,教过小学高年级数学的教师都会对运用线段图来解答分数问题情有独钟,但线段图在解决其他类型的问题同样也会发挥其直观、形象作用。
2、列举信息的策略
枚举筛选法是指解某些数学题时,有时要根据题目的一部分条件,先把可能的答案一一列举出来,然后再根据另一部分条件检验,筛选出题目的答案。数学问题的解决过程既是一种不断地变更问题的过程,也是一种不断试错与筛选的过程。
3、动手做的策略
这是一种通过探索性动手操作而获得问题解决的策略。在学习空间与图形这一块内容时,动手做的策略就会显得很有效。如在讲授认识平行四边形这一新课时,教学目标就是要让学生能够自己动手操作探索出平行四边形的基本特征两条对边互相平行且相等。需要注意的是,在学生动手之前,教师不要给太多的暗示,要把实际操作策略的选择权留给学生,让学生在自主探索中实现操作策略的多样化。
4、尝试的策略
美国着名心理学家桑代克曾把人和动物的学习定义为刺激与反应之间的联结,联结是通过盲目尝试、逐步减少错误而形成的,即通过试误形成的。桑代克的尝试--错误说早在一百年前就提出来了,也被大多数人所认同。这里的尝试策略也就是多种方法的“试误”过程。不同的学生有着不同的数学水平,因此,要允许学生以不同的方式去学习数学。教师所要做的,就是要充分尊重每一个学生的个体差异,让学生采用尝试的策略去解决问题。
⑺ 小学数学解决问题的策略有哪些
小学数学解决问题的策略有以下几个步骤:
1. 阅读理解题目
首先要仔细阅读题目,理解题意,找出问题的关键点和要求,确定所给的数据和需要求解的未知量。
2. 列出方程式
根据问题的描述和要求,列出方程式,尽量简化表达式,定义正确的符号,以便更好地表示关余老系。
3. 解方程式
使用基本的数学运算和计算技巧,解决方程式,逐步求解未知量,检查答案是否与判毁世问题所要求的一致。
4. 回答问题
将求得的解答应用到原题目上,判断结果是否符合要求,是否能够解释和说明问题的全部内容。
5. 检查掘肢结果
最后一步是检查答案是否正确,如果有时间,可以反复检查解答过程和结果,发现错误并改正,以确保结果正确。
这些策略在小学数学中是非常重要的,能够帮助学生系统性地解决数学问题。当学生掌握这些策略,并能够熟练运用时,就能够更自信地面对数学问题,并取得更好的成绩。