‘壹’ 使用原子荧光分光光度计进行测量时应该选择哪些测量条件
原理
原子吸收分光光度计又称原子吸收光谱仪,所谓原子吸收就是指气态自由原子,对于同种原子发射出来的特征光谱辐射具有吸收现象,将这种原子吸收现象应用到化学定量分析,首先必须将试样溶液中的待测元素原子化,同时还要有一个强度稳定的光源,给出同样原子光谱辐射,使之通过一定的待测元素原子区域,从而测出其消光值,然后根据消光值对标准溶液浓度关系曲线,计算出试样中待测元素的含量 。它能够灵敏可靠地测定微量或痕量元素。
组成与分类
原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、单色仪和数据处理系统(包括光电转换器及相应的检测装置)。
原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气-乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。
火焰原子吸收分光光度计,利用空气-乙炔测定的元素可达30多种,若使用氧化亚氮-乙炔火焰,测定的元素可达70多种。但氧化亚氮-乙炔火焰安全性较差,应用不普遍。空气-乙炔火焰原子吸收分光光度法,一般可检测到PPm级(10),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。
火焰法可测元素70余种
锂(Li), 钠(Na),铷(Rb),铯(Cs),Be,镁(Mg),钙(Ca),锶(Sr),钡(Ba), 钪(Sc), 镧(La)Y, Ti, 锆(Zr), Hf, V, Nb, Ta, 铬(Cr), 钼(Mo), W, 锰(Mn), Tc, 梾(Re), 铁(Fe), Ru, Os, 钴(Co), 铑(Rh),lr,镍(Ni),钯(Pd),铂(Pt),铜(Cu),银(Ag),金(Au),锌(Zn),镉(Cd),汞(Hg),B(鹏),铝(Al),(Ga),铟(In),Tl,硅(Si),Ge,意(Sn),铅(Pb),磷(P),砷(As),(Sb),铋(Bi),钪(Se),Te,铈 Ce,Th,镨(Pr),钕(Nd),Sm, Eu, Gd,Tb,Dy,Ho,Er,Tm,Yb,镥(Lu),U
氢化物法可测元素
Ge,As,Se,Sn,Sb,Te,Hg,Pb,Bi
石墨炉原子吸收分光光度计,可以测定近60余种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/mL级。
石墨炉法可测元素60余种
Li,Na,K, Rb,Cs,Be,Mg,Ca,Sr,Ba, Sc, Y, La, Ti, V, Cr, Mo, Mn, Tc, Re, Fe, Ru, Os, Co, Rh , lr,Ni,Pd,Pt,Cu,Ag,Au,Zn,Cd,Hg,B,Al,Ga,In,Tl,Si,Ge,Sn,Pb,P,As,Sb,Bi,Se,Te,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,U
元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被测元素的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I0= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。
‘贰’ 常见元素化学分析方法的目录
1金(Au)
1.1甲酸还原磷钼酸分光光度法测定矿石中的金
1.2硫代米蚩酮分光光度法测定硅酸岩中的痕量金
1.3原子吸收分光光度法测定矿石中的微量金
1.4酚藏花红分光光度法测定铜合金中的金
1.5二正辛基亚砜萃取?原子吸收分光光度法测定矿石中的微量金
2银(Ag)
2.1高锰酸分光光度法测定铁中的痕量银
2.2曙红?银?邻菲咯啉分光光度法测定镁合金中的银
2.3EDTA络合滴定法测定银合金中的银
2.4原子吸收分光光度法测定铁矿中的银
2.5硫氰化物容量法测定银合金中的银
2.6镉试剂A?吐温80分光光度法测定照相定影液废水中的银
3铝(Al)
3.1偶氮氯膦Ⅰ分光光度法测定金属铜中的铝
3.2铬偶氮酚KS分光光度法测定铁锰矿石中的铝
3.3EDTA络合滴定法测定钛中的铝
3.4铬天青S分光光度法测定铁合金中的铝
3.5原子吸收分光光度法测定金属材料中的铝
3.6CAS?TPB分光光度法测定金属镍中的微量铝
4砷(As)
4.1砷化物分光光度法测定高纯金属中的微量砷
4.2砷钼酸?结晶紫分光光度法测定岩石矿物中的砷
4.3孔雀绿分光光度法测定矿石中的微量砷
4.4二乙基二硫代氨基甲酸银分光光度法测定水中的微量砷
4.5碘量法测定合金中的砷
4.6钼蓝分光光度法测定合金中的砷
5硼(B)
5.1亚甲基蓝?1,2?二氯乙烷萃取分光光度法测定合金中的微量硼
5.2酸碱滴定容量法测定硼合金中的硼
6铍(Be)
6.1容量法测定合金中的铍
6.2铬天青S分光光度法测定合金中的微量铍
6.3甲基百里酚蓝分光光度法测定铍青铜中的铍
6.4铍试剂Ⅲ分光光度法测定合金中的微量铍
6.5偶氮氯膦Ⅰ分光光度法测定矿石中的微量铍
7铋(Bi)
7.15?Br?PADAP分光光度法测定铅中的铋
7.2二硫代二安替比林甲烷分光光度法测定矿石中的铋
7.3碘化钾分光光度法测定纯金属中的铋
7.4硫脲比色法测定铅合金中的铋
7.5双硫腙?苯萃取分光光度法测定高温合金钢中的铋
8钡(Ba)
8.1EDTA络合滴定法测定铌矿石中的钡
8.2二甲基偶氮磺Ⅲ分光光度法测定碱土金属中的微量钡
8.3重量法测定矿石中的钡
9碳(C)
9.1库仑法测定金属中的碳
9.2气体容量法测定金属中的碳
9.3非水滴定法测定钢铁中的碳
10钙(Ca)
11铜(Cu)
12钴(Co)
13铬(Cr)
14镉(Cd)
15铈(Ce)
16稀土总量
17氯(Cl)
18铁(Fe)
19氟(F)
20锗(Ge)
21镓(Ga)
21?5罗丹明B?苯?乙醚萃取分光光度法测定煤中镓
22汞(Hg)
23铱(Ir)
24铟(In)
25钾(K)、钠(Na)
26锂(Li)
27镁(Mg)
28锰(Mn)
29钼(Mo)
30氮(N)
31镍(Ni)
32铌(Nb)
33钕(Nd)
35铅(Pb)
36钯(Pd)
37铂(Pt)
38铷(Rb)、铯(Cs)
39铼(Re)
40铑(Rh)
41钌(Ru)
42硫(S)
43硅(Si)
44硒(Se)
45锡(Sn)
46锑(Sb)
47锶(Sr)
48钪(Sc)
49碲(Te)
50钛(Ti)
51钍(Th)
52钽(Ta)
53铀(U)
54钒(V)
55钨(W)
56钇(Y)
57锆(Zr)
58锌(Zn)
参考文献
‘叁’ X射线荧光光谱法测定铝土矿中主、次、痕量元素
方法提要
采用熔融玻璃片制样,用经验系数法校正基体效应,测定铝土矿样品中的Al2O3、SiO2、Fe2O3、TiO2、K2O、Na2O、CaO、MgO、P2O5、MnO、S、Pb、Zn、Sr、Zr、V、Ga、Cr、Sc等19个元素进行测定,各元素组分测定范围见表50.5。
表50.5 各元素组分测定范围
仪器
波长色散X射线荧光光谱仪,端窗铑靶X射线管(3kW以上)。具有校准、校正功能完备分析软件。
高温熔样机(温度1150℃以上)。
铂金合金坩埚(Pt95%+Au5%)。
试剂
混合熔剂:四硼酸锂(67%)和偏硼酸锂(33%),混合,于500℃灼烧2h。保存于干燥器中。
硝酸铵溶液(500g/L)。
饱和溴化锂溶液。
国家一级标准物质铝土矿GBW07177~GBW07182和GBW03133。由于铝土矿的标准物质较少,分析的试样要求元素的范围宽,可用国家标准物质作适当的组合,以增加标准的含量梯度。同时增加一些内部有化学结果和外检结果的铝土矿试样,使标准系列中各元素形成既有一定含量范围又有适当梯度的标准系列。
选择一个或多个分析元素含量适当的标准物质作为仪器漂移校正样。
校准曲线
称取0.2500g经105℃烘2h标准物质、5.0000g混合熔剂(四硼酸锂和偏硼酸锂)置于瓷坩埚中,搅拌均匀,转入铂金合金坩埚(95%Pt+5%Au)内。加入2mL500g/L硝酸铵溶液、7滴溴化锂饱和溶液,将坩埚置于熔样机上于500℃预氧化3min,再升温至1100℃并同时摇摆和旋转熔融6min,在坩埚冷却后,取出玻璃片。
根据仪器的配置和铝土矿分析的要求选定测量条件(见表50.6)。测量均在真空状态下进行。
表50.6 元素测量条件
续表
按上述测量条件建立分析程序,启动校准标准系列试样测量,计算各元素分析线净强度。
采用一点法扣除背景,按下式计算分析线余渣袜净强度Ii:
岩石矿物分析第三分册有色、稀有、分散、稀土、竖激贵金属矿石及铀钍矿石分析
式中:IP为分析线谱峰强度,103s-1;IB为分析线背景强度,103s-1。
在铝土矿样品的分析中,由于主、次量元素的含量变化范围较大,样品虽经混合熔剂熔融,但元素间的效应仍然存在,故需要进行元素间吸收-增强效应的校正。
对于Al2O3、SiO2、Fe2O3、TiO2、K2O、Na2O、CaO、MgO、P2O5、MnO、Sc、V、Cr等组分,采用经验α系数法校正元素间的效应。依据标准样品中各组分的标准值与元素分析线的净强度(103s-1),按标准校正公式进行回归计算,求出各元素组分的校准、校正系数。
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:wi为分析元素i的质量分数;Lik为谱线重叠干扰系数;Qk为重叠干扰元素k的含量(或强度);Di、Ei为校准曲线常数;Ri为分析元素i的X射线强度或内标比;wj为基体效应校正元素j的含量(或强度);αij为基体校正系数。
对于Pb、Zn、Sr、Zr、Ga等痕量元素,采用铑靶Kα线的康普顿散射线作内标,校正基体效应。
将上述求出的校准、校正系数存入计算机相关分析程序中备用。
测定仪器漂移校正试样,将各元素的分析谱线净强度Ii作为漂移校正基准存入计算机。
分析步骤
按校准标准制备方法制备未知试样,装入样品盒,确认无误后放入自动样品交换器,启动相应的分析程序,进行测定。
在建立了校准曲线后,一般的常规分析不再测定校准标准梁搭系列,仅需在每次分析时调用存入的校准、校正系数,测定仪器漂移校正试样,求出漂移校正系数,由计算机自动进行强度测量及校正、背景扣除、基体效应的校正,仪器漂移校正,最后打印分析结果。
仪器漂移校正系数的计算见下式:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:αi为仪器漂移校正系数;I1为初次测量仪器漂移校正试样得到的漂移校正基准强度,103s-1;Im为分析试样时测量仪器漂移校正试样测得的净强度,103s-1。
仪器漂移的校正公式为:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:Ii为漂移校正后的分析线强度,103s-1;I'i为未作漂移校正的分析线强度,103s-1;αi为仪器漂移校正系数。
注意事项
1)由于铝矿石的分析着重在于主量Al2O3、SiO2、Fe2O3的分析,对其分析质量要求相对也较高。采用较高稀释比例(1∶20)熔融法制样,不仅能更好地消除样品中的颗粒度效应、矿物效应,提高分析结果的准确度;而且使制样过程可靠稳定,还能很好地保护铂金合金坩埚而大大延长其使用寿命,从而降低制样成本。
2)由于采用了较高稀释比例(1∶20)熔融法制样,致使痕量组分的检测限变差,对于含量较低的痕量组分检测结果不太可靠,须结合粉末压片法来分析。
3)如需同时测定硫,熔融样品时温度需低于1100℃(约1050℃),熔融12min左右,以免硫挥发。
4)最好根据所用仪器重新核定测量条件和测定下限。
‘肆’ 任务硅酸盐中氧化钙的测定
实训准备
岩石矿物分析
任务分析
一、硅酸盐中氧化钙含量的测定简述
钙和镁在硅酸盐试样中常常一起出现,常需同时测定。在经典分析系统中是将它们分开后,再分别以重量法或滴定法测定;而在快速分析系统中,则常常在一份溶液中控制不同的条件分别测定。钙和镁的光度分析方法也很多,并有不少高灵敏度的分析方法,例如,Ca2+与偶氮胂M及各种偶氮羧试剂的显色反应,在表面活性剂的存在下,生成多元配合物,ε>1×105L/(mol·cm);Mg2+与铬天青S、苯基荧光酮类试剂的显色反应,在表面活性剂的存在下,生成多元配合物,ε>1×105L/(mol·cm)。由于硅酸盐试样中的Ca、Mg含量不低,普遍采用配位滴定法和原子吸收分光光度法。
二、配位滴定法
在一定条件下,Ca2+、Mg2+能与EDTA形成稳定的1∶1型配合物(Mg-EDTA的K稳=108.89,Ca-EDTA的K稳=1010.59)。选择适宜的酸度条件和适当的指示剂,可用EDTA标准滴定溶液滴定钙、镁。
1.酸度控制
EDTA滴定Ca2+时的最高允许酸度为pH>7.5,滴定Mg2+时的最高允许酸度pH>9.5。在实际操作中,常控制在pH=10时滴定Ca2+和Mg2+的合量,再于pH>12.5时滴定Ca2+。单独测定Ca2+时,控制pH>12.5,使Mg2+生成难离解的Mg(OH)2,可消除Mg2+对测定Ca2+的影响。
2.滴定方式
(1)分别滴定法。在一份试液中,以氨-氯化铵缓冲溶液控制溶液的pH =10,用EDTA标准滴定溶液滴定钙和镁的合量;然后,在另一份试液中,以氢氧化钾溶液调节pH为12.5~13,在氢氧化镁沉淀的情况下,用EDTA标准滴定溶液滴定钙,再以差减法确定镁的含量。
(2)连续滴定法。在一份试液中,用氢氧化钾溶液先调至pH为12.5~13,用EDTA标准滴定溶液滴定钙;然后将溶液酸化,调节 pH =10,继续用 EDTA 标准滴定溶液滴定镁。
3.指示剂的选择
配位滴定法测定钙、镁的指示剂很多,而且不断研究出新的指示剂。配位滴定钙时,指示剂有紫脲酸铵、钙试剂、钙黄绿素、酸性格蓝K、偶氮胂Ⅲ、双偶氮钯等。其中,紫脲酸铵的应用较早,但是它的变化不够敏锐,试剂溶液不稳定,现已很少使用,而钙黄绿素和酸性铬黑蓝K的应用较多。配位滴定镁时,指示剂有铬黑T、酸性铬蓝K、铝试剂、钙镁指示剂、偶氮胂Ⅲ等。其中,铬黑T和酸性铬蓝K的使用较多。
钙黄绿素是一种常用的荧光指示剂,在 pH >12 时,其本身无荧光,但与 Ca2+、Mg2+、Sr2+、Ba2+、Al3+等形成配合物时呈现黄绿色荧光,对Ca2+特别灵敏。但是,钙黄绿素在合成或贮存过程中有时会分解而产生荧光黄,使滴定终点仍有残余荧光。因此,常对该指示剂进行提纯处理,或以酚酞、百里酚酞溶液加以掩蔽。另外,钙黄绿素也能与钾、钠离子产生微弱的荧光,但钾的作用比钠弱,故尽量避免使用钠盐。
酸性铬蓝K是一种酸碱指示剂,在酸性溶液中呈玫瑰红色。它在碱性溶液中呈蓝色,能与Ca2+、Mg2+形成玫瑰色的配合物,故可用作滴定钙、镁的指示剂。为使终点敏锐,常加入萘酚绿B作为衬色剂。采用酸性铬蓝K-萘酚绿B作指示剂,二者配比要合适。若萘酚绿B的比例过大,绿色背景加深,是终点提前到达;反之,终点拖后且不明显。一般二者配比为1:2左右,但需根据试剂质量,通过试验确定合适的比例。
4.干扰情况及其消除方法
EDTA滴定钙、镁时的干扰有两类,一类是其他元素对钙镁测定的影响,另一类是钙和镁的相互干扰。现分述如下。
(1)其他元素对钙镁测定的影响
EDTA滴定法测定Ca、Mg时,Fe、Al、Ti、Mn、Cu、Pb、Zn、Ni、Cr、Sr、Ba、U、Th、Zr、REE等金属元素及大量Si、P等均有干扰。它们的含量低时可用掩蔽法消除,量大时必须分离。
掩蔽剂可选用三乙醇胺、氰化钾、二巯基丙醇、硫代乙醇酸、二乙基二硫代氨基甲酸钠(铜试剂)、L-半胱氨酸、酒石酸、柠檬酸、苦杏仁酸、硫酸钾等。三乙醇胺可以掩蔽Fe(Ⅲ)、Al、Cr、Be、Ti、Zr、Sn、Nb、U(Ⅳ)和少量Mn(Ⅲ)等;氰化钾可掩蔽Ag、Cd、Cu、Co、Fe(Ⅱ)、Hg、Zn、Ni、Au、Pt族金属、少量Fe(Ⅲ)和Mn等;二巯基丙醇可掩蔽As、Cd、Hg、Pb、Sb、Sn(Ⅳ)、Zn及少量Co和Ni等;硫代乙醇酸可掩蔽Bi、Cd、Hg、In、Sn(Ⅱ)、Tl(Ⅰ)、Pb、Zn及少量Fe(Ⅲ)等;铜试剂可掩蔽Ag、Cu、Co、Hg、Sb(Ⅲ)、Al、Ni、Zn;L-半胱氨酸可掩蔽少量的 Cu、Co、Ni 等;酒石酸可掩蔽 Fe(Ⅲ)、Al、As(Ⅲ)、Sn(Ⅳ)等;苦杏仁酸可有效掩蔽Ti;硫酸钾可掩蔽Sr和Ba。实际工作中,常用混合掩蔽剂,如三乙醇胺-氰化钾、酒石酸-三乙醇胺-铜试剂、三乙醇胺-氰化钾-L-半胱氨酸等。
Ca、Mg与其他元素的分离,常用六亚甲基四胺-铜试剂小体积沉淀法。在小体积的pH为6~6.5的六亚甲基四胺溶液中,Al、Ti、Sn、Cr(Ⅲ)、Th、Zr、U(Ⅳ)呈氢氧化物沉淀;铜试剂能和Cu、Pb、Co、Ni、Cd、Hg、Ag、Sb(Ⅲ)等形成配合物沉淀。Fe(Ⅲ)先形成氢氧化物沉淀,然后转变为Fe(Ⅲ)-Cu试剂沉淀。Mn在pH>8时才能沉淀完全(这里需用氨水代替六亚甲基四胺)。当试液中含量大量Fe、Al时,P、Mo、V亦可沉淀完全。沉淀时溶液的温度应控制在40~60℃时加入铜试剂,温度太低时,沉淀颗粒小,体积大,容易吸附Ca、Mg;温度太高,铜试剂易分解。另外,酸度太小,铜试剂也容易分解,因此,一般控制在pH 6左右沉淀为宜。
(2)钙和镁的相互干扰
EDTA滴定法测定钙和镁时,它们的相互影响,主要是由于镁含量高及钙与镁含量相差悬殊时的相互影响。例如,在pH≥12.5时滴定钙,若镁含量高,则生成的氢氧化镁的量大,它吸附Ca2+,将使结果偏低;它吸附指示剂,使终点不明显,滴定过量,又将是结果偏高。
为了解决钙镁在配位滴定中的相互干扰,除用各种化学分离方法将钙、镁分离后分别测定以外,还可以采取以下方法。
1)加入胶体保护剂,以防止氢氧化镁沉淀凝聚。在大量镁存在下滴定钙时,可在滴定前加入糊精、蔗糖、甘油或聚乙烯醇等作为氢氧化镁的胶体保护剂,使调节酸度时所生成的氢氧化镁保持胶体状态而不致凝聚析出沉淀,以降低氢氧化镁沉淀吸附钙的影响。这些保护剂中,糊精效果良好,应用较为普遍。
2)在氢氧化镁沉淀前用EDTA降低Ca2+浓度。为了减少氢氧化镁沉淀吸附Ca2+所造成的误差,可以在酸性条件下加入一定量的标准EDTA溶液。这样,在调节酸度至氢氧化镁沉淀时,试样中的Ca2+就已经部分或全部的与EDTA生成了配合物,被氢氧化镁吸附而造成的误差就大大减少。具体操作方法有两种:一种是加入过量EDTA后,调节pH=12.5~13,用钙标准溶液滴定过剩的EDTA;另一种是加入一定量(按化学计量约相当于钙量的95%)的EDTA,在调至pH为12.5~13,加入适当的指示剂,再用EDTA滴定至终点。
三、原子吸收分光光度法
原子吸收分光光度法测定钙和镁,是一种较理想的分析方法,操作简便,选择性、灵敏度高。
1.钙的测定
在盐酸或高氯酸介质中,加入氯化锶消除干扰,用空气-乙炔火焰,于422.7 nm波长下测定钙,其CaO灵敏度为0.084μg/mL。
2.镁的测定
介质的选择与钙的测定相同,只是盐酸的最大允许浓度为10%。在实际工作中可以控制与钙的测定完全相同的化学条件。在 285 nm 波长下测定镁,其mgO 灵敏度为0.017μg/mL。
采用该方法应注意以下问题:
(1)原子吸收分光光度法测定钙和镁时,铁、锆、钒、铝、铬、铀以及硅酸盐、磷酸盐、硫酸盐和其他一些阴离子,都可能与钙镁生成难挥发的化合物,妨碍钙镁的原子化,故需在溶液中加入氯化锶、氯化镧等释放剂和EDTA、8-羟基喹啉等保护剂。
(2)钙的测定宜在盐酸或高氯酸介质中进行,不宜使用硝酸、硫酸、磷酸,因为它们将与钙镁生成难溶盐类,影响其原子化,使结果偏低。盐酸浓度2%、高氯酸浓度6%、氯化锶浓度10% 对测定结果无影响。
(3)在实际工作中,常控制在1% 盐酸介质中,有氯化锶存在下进行测定。此时,大量的钠、钾、铁、铝、硅、磷、钛等均不影响测定,钙镁之间即使含量相差悬殊也互不影响。另外,溶液中含有1% 的动物胶溶液1mL及1 g氯化钠也不影响测定。所以在硅酸盐分析中,可直接分取测定二氧化硅的滤液来进行钙镁的原子吸收法测定,还可以用氢氟酸、高氯酸分解试样后进行钙镁的测定。
技能训练
EDTA滴定法检测氧化钙
(一)检测流程
岩石矿物分析
(二)试剂配制
(1)EDTA标准溶液(0.02mol/L):称取4g EDTA溶于少许水中,待溶解后,稀释至500mL。
(2)盐酸(1+1)。
(3)酸性铬兰K-萘酚绿B指示剂:称取0.2g酸性铬蓝K,0.4g萘酚绿B于烧杯中,先滴数滴水用玻璃棒研磨,加100mL水使其完全溶解(试剂质量常有变化,可视具体情况选取最适宜的比例)。
(4)NH3-NH4Cl缓冲溶液(pH=10):称取氯化铵27g,溶于少许水中,加浓氨水175mL,移入500mL容量瓶中,用水稀释至刻度,摇匀备用(可用pH试纸检查一下pH是否为10 )。
(5)三乙醇胺:15%。
(6)钙黄绿素-甲基百里香酚蓝-酚酞混合指示剂(简称CMP混合指示剂):称取1.000 g钙黄绿素、1.000 g甲基百里香酚蓝、0.200 g酚酞与50 g已在105℃烘干过的硝酸钾混合研细,保存在磨口瓶中。
(7)KOH溶液(200g/L)。
(三)操作步骤
1.EDTA标准溶液标定
标定方法见配位滴定法检测三氧化二铁:TEDTA/CaO=CEDTA×56.08(mg/mL)。
2.硅酸盐中钙的测定
吸取滤液25mL,置于250mL锥形瓶中,加水稀释至约100mL,加5mL三乙醇胺及少许的钙黄绿素-甲基百里香酚蓝混合指示剂,在搅拌下加入氢氧化钾溶液至出现绿色荧光后再过量5~8mL,此时溶液pH>12.5。用EDTA标准溶液滴定至绿色荧光消失并呈现红色。
3.结果计算
CaO质量分数按下式计算:
岩石矿物分析
式中:w(CaO)为CaO的质量分数,%;T为EDTA标准滴定溶液对CaO的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g。
实验指南与安全提示
酸度控制。EDTA滴定Ca2+时的最高允许酸度为pH>7.5,滴定Mg2+时的最高允许酸度pH>9.5。在实际操作中,常控制在pH=10 时滴定Ca2+和Mg2+的合量,再于pH>12.5时滴定Ca2+。单独测定Ca2+时,控制pH >12.5,使Mg2+生成难离解的Mg(OH)2,可消除Mg2+对测定Ca2+的影响。
在不分离硅的试液中测定钙时,在强碱性溶液中生成硅酸钙,使钙的测定结果偏低。可将试液调为酸性后,加入一定量的氟化钾溶液,并搅拌与放置2min以上,生成氟硅酸:H2SiO3+6H++6F-=H2SiF6+3H2O。再用氢氧化钾将上述溶液碱化,发生反应:H2SiF6+6OH-=H2SiO3+6F-+3H2O。该反应速率较慢,新释出的硅酸为非聚合状态的硅酸,在30min内不会生成硅酸钙沉淀。因此,当碱化后应立即滴定,即可避免硅酸的干扰。
加入氟化钾的量应根据不同试样中二氧化硅的大致含量而定。例如,含SiO2为2~15mg的水泥、矾土、生料、熟料等试样,应加入氟化钾溶液(20g/L KF·2H2O)5~7mL;而含SiO2为25mg以上的黏土、煤灰等试样,则加入15mL。若加入氟化钾的量太多,则生成氟化钙沉淀,影响测定结果及终点的判断;若加入量不足,则不能完全消除硅的干扰,两者都使测定结果偏低。
铁、铝、钛的干扰可用三乙醇胺掩蔽。少量锰与三乙醇胺也能生成绿色配合物而被掩蔽,锰量太高则生成的绿色背景太深,影响终点的观察。加入三乙醇胺的量一般为5mL,但当测定高铁或高锰类试样时应增加至10mL,并经过充分搅拌,加入后溶液应呈酸性,如变浑浊应立即以盐酸调至酸性并放置几分钟。
滴定至近终点时应充分搅拌,使被氢氧化镁沉淀吸附的钙离子能与EDTA充分反应。
如试样中含有磷,由于有磷酸钙生成,滴定近终点时应放慢速度并加强搅拌,当磷含量较高时,应采用返滴定法测Ca2+。