导航:首页 > 解决方法 > 三种方法解决等差数

三种方法解决等差数

发布时间:2023-06-29 15:02:25

‘壹’ 数学等差数列怎样求通项公式

这样问范围很广泛
但数列求通项公式有一些基本题型
一、由公式:等差数列通项公式an=a1+(n-1)d,确定其中的3个量:n,d,a1可求得
二、由前几项要求推出通项公式:写出n与an,观察之间的关系。如果关系不明显,应该将项作适当变形或分解,让规律突现出来,便于找到通项公式
三、已知前n项和sn,可由an=sn-s(n-1),但要注意Sn-S(n-1)是在n≥2的条件下成立的,若将n=1代入该式所得的值与S1相等,则{an}的通项公式就可用统一的形式来表示,否则就写成分段数列的形式
四、由递推公式求数列通项公式:已知数列的递推公式求通项,可把每相邻两项的关系列出来,抓住它们的特点进行适当处理,有时借助拆分或取倒数等方法构造等差数列或等比数列,转化为等差数列或等比数列的通项问题.

建议找些题目补充提问,这样回答才能更具体。

‘贰’ 数列解题方法有哪些

这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧
基本数列是等差数列和等比数列

一、等差数列

一个等差数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):
1、首项a1和公差d
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数

等差数列的性质:
1、前N项和为N的二次函数(d不为0时)
2、a(m)-a(n)=(m-n)*d
3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列

例题1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48

例题2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差数列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25

二、等比数列

一个等比数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):
1、首项a1和公比r
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数

等比数列的性质:
1、a(m)/a(n)=r^(m-n)
2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列
3、等比数列的连续m项和也是等比数列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。

三、数列的前N项和与逐项差

1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。
(这与积分很相似)

2、逐项差就是数列相邻两项的差组成的数列。
如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。
(这与微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
从上例看出,四次数列经过四次逐项差后变成常数数列。

等比数列的逐项差还是等比数列

四、已知数列通项公式A(N),求数列的前N项和S(N)。
这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。
解法是寻找一个数列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
从而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。

例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N积分得(N*LN2-1)*2^N/(LN2)^2
因此设B(N)=(PN+Q)*2^N
则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因为上式是恒等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2

例题2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)为N的四次多项式,
设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E

解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4

阅读全文

与三种方法解决等差数相关的资料

热点内容
腮腺肿瘤早期治疗方法 浏览:164
中医对中暑治疗方法 浏览:211
pico方法研究问题举例 浏览:304
有优力防水怎么使用方法 浏览:36
成人快速止痒的方法 浏览:330
红米note3自带内存卡在哪里设置方法 浏览:959
梦妆眼霜使用方法 浏览:674
教案里面过程与方法目标怎么写 浏览:983
猪肉炒制的正确方法 浏览:242
超小变压器的测量方法 浏览:403
木门测量方法和注意事项 浏览:927
姜力怎么使用方法 浏览:438
恒冠15l钓箱天窗安装方法 浏览:905
台式机电脑截图方法 浏览:460
dj水果机如何破解方法 浏览:163
里美鸡蛋面膜使用方法 浏览:781
怎么变双眼皮天然方法 浏览:395
霉菌性鼻窦炎的最好治疗方法 浏览:905
油锯链条连接的方法 浏览:331
魅族魅蓝5返回键在哪里设置方法 浏览:274