导航:首页 > 解决方法 > 矿业的鉴别方法

矿业的鉴别方法

发布时间:2023-06-26 14:02:18

① 野外肉眼鉴定矿物的方法有哪些

1. 石墨C
通常为鳞片状、片状或块状集合体。铁黑色或钢灰色,条痕黑灰色,晶体良好者具强金属光泽,块状体光泽暗淡,不透明。有一组极完全解理,硬度1-2,薄片具挠性。比重2.09-2.23。具滑腻感,高度导电性,耐高温(熔点高)。化学性稳定,不溶于酸。
鉴定特征:钢灰色,染手染指,滑腻感。
2. 金刚石C
晶体类似球形的八面体或六八面体。无色透明,含杂质者黑色(黑金刚),强金刚光泽,硬度10。解理完全,性脆。比重3.47-3.56。紫外线下发荧光。具高度的抗酸碱性和抗辐射性。
鉴定特征:最大硬度和强金刚光泽。
硫化物类矿物
3. 辉铜矿Cu2S
完好晶体少见,一般呈块状、粒状集合体。铅灰至黑色(表面有时具翠绿色或天蓝色小斑),条痕黑灰色,金属光泽,(风化面常有一层无光被膜),不透明。硬度2-3,解理不清楚,稍具延展性。比重5.5-5.8。
鉴定特征:黑铅灰色,硬度低,用刀尖可以刻出光亮痕迹。
4. 方铅矿PbS
晶体常为六面体或六面体与八面体的聚形;一般呈致密块状或粒状集合体。铅灰色,条痕黑灰色,金属光泽,不透明。硬度2.5-2.75,三组立方解理完全,性脆。比重7.4-7.6。
鉴定特征:铅灰色,硬度低,比重大,可以碎成立方小块。
5. 闪锌矿ZnS
一般多为致密块状或粒状集合体。浅黄、黄褐到铁黑色(视含Fe多少而定),条痕较矿物色浅,呈浅黄或浅褐色。金刚光泽(新鲜解理面)、半金属光泽(深色闪锌矿)或稍具松脂光泽(浅色闪锌矿)。半透明(浅色者)到不透明(深色者)。硬度3.5-4。六组完全解理,性脆。比重3.9-4.1。
鉴定特征:颜色不太固定,但条痕经常比颜色浅(浅黄褐色),稍具松脂光泽,棱角或碎块透光,多向完全解理。
6. 辰砂HgS
晶形为细小厚板状或菱面体;多呈粒状、致密块状或粉末被膜。朱红色,条痕与色相同,金刚光泽(新鲜晶面),半透明。硬度2-2.5,三组解理完全,性脆。比重8.09-8.20。
鉴定特征:颜色及条痕朱红色,硬度低,比重大。
7. 辉锑矿Sb2S3
晶体为具有锥面的长柱状或针状,柱面具明显纵纹,一般呈柱状、针状或块状集合体。铅灰色,条痕黑灰,强金属光泽,不透明。硬度2-2.5。一组解理完全,性脆。比重4.5-4.6。蜡烛可以熔化。
鉴定特征:柱状、针状集合体,铅灰色,硬度低(指甲可以刻动),单项完全解理,极易熔化。辉锑矿与方铅矿相似,但后者具立方解理,比重大,不易熔,可以区别。
8. 辉钼矿MoS2
通常呈叶片状、鳞片状集合体。铅灰色,条痕亮灰色(常带微绿),金属光泽,不透明。硬度1-1.5,最完全解理,薄片有挠性。比重4.7-5.0,有滑腻感。
鉴定特征:铅灰色,最完全解理,可以离成薄片,能在纸上划出条痕,有滑腻感。
9. 黄铁矿FeS2
经常发育成良好的晶体,有六面体、八面体、五角十二面体及其聚形。六面体晶面上有与棱平行的条纹,各晶面上的条纹互相垂直。有时呈块状、粒状集合体或结核状。浅黄(铜黄)色,条痕黑色(带微绿),强金属光泽,不透明。硬度6-6.5(硫化物中硬度最大的一种),无解理,性脆。比重4.9-5.2。在地表条件下易风化为褐铁矿。
鉴定特征:完好晶体,浅黄色,条痕黑色,较大的硬度(小刀刻不动)。
10. 黄铜矿CuFeS2
完好晶体少见,多呈致密块状或分散粒状。金黄色(表面常有绣色),条痕黑色(带微绿),金属光泽,不透明。硬度3.5-4,解理不清楚,性脆。比重4.1-4.3。
鉴定特征:金黄色,条痕近黑色,硬度中等。

② 矿物识别方法和工作流程

目前,矿物识别制图的方法是特征谱带识别和基于相似性测度的识别:①利用岩石矿物的特征谱带构造识别技术,该方法相对直观,简单可行,但是单一的特征往往造成岩石矿物的错误识别,其精度难以达到工程化应用的需求,同时对成像光谱数据的信噪比、光谱重建的精度要求较高;②从岩石矿物光谱的整体特征出发,与成像光谱视反射率数据进行整体匹配、拟合或构造模型进行分解,这也是目前研究的重点,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息,避免局部性特征(如单一特征构建的识别方法)造成识别的混淆,识别的精度高。

对于成像光谱上百个波段而言,数据量非常之大,尤其在目前无论是航空成像光谱数据,如AVIRIS、CASI、HyMap等,还是在轨的航天成像光谱数据,如Hyperion航带都普遍比较窄,一般在3~10km,给大面积应用带来很多不便,增加了大面积数据处理的难度,并使工作量在目前微机配置的条件下成倍增加。因此,无论是从岩石矿物光谱的局域特征还是整体特征开展对矿物的识别,在保证识别精度要求的条件下进行工程化的处理,必须探索新的技术流程。

在对成像光谱数据特征与识别方法的比较研究中,结合工作实际以及进行工程化处理的初步要求,在确保识别精度的条件下,设计出标准数据库光谱+光谱-特征域转换+矿物识别方法的技术流程。该流程的主要作用:

(1)直接开展蚀变矿物的识别与信息提取:在对试验区岩石类型、构造、热液活动以及矿产综合研究的基础之上,提炼与矿化关系密切的蚀变矿物,利用标准库的光谱或野外实测光谱作为参考光谱。

(2)进行光谱域与特征域的转换,实现数据减维与数据压缩,降低工作量,提高工作效率:成像光谱数据波段上百,不同的航带宽度与记录长度使单次处理的数据量达1Gbytes,中间过渡文件单航带可达10Gbytes;在以前的处理中常常将航带分割成较小的区域进行处理后再进行拼接,利用MNF技术可以将整个光谱域空间转换到特征域空间,消除原有光谱向量间各分量之间的相关性,从而去掉信息量较少噪声较高的向量,使数据处理从成百的光谱域集中到去噪的特征域中进行,减低数据量,缩短数据处理时间,提高数据处理的效率。

(3)特征分离,增加不同矿物的可分性,提高矿物识别的精度:在成像光谱数据MNF变换并剔除噪声波段的特征域空间中,不同的波段被赋予了不同的物理或数学意义,地物的光谱特征在特征域发生分离,地物的细微特征得到放大,增加了数据的可分性。

4.4.2.1 光谱特征域转换

光谱分辨率的提高,一方面提高了数据的分类识别的精度以及应用能力,另一方面,增加了数据的容量,也使数据高冗余高相关。有效的数据压缩与特征提取势在必行。一般地,利用传统的主成分变换进行相应的变化,衍生出一系列的成像光谱数据压缩与特征提取方法,如MNF变换(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分块主成分变换(Jia et al.,1998)以及基于主成分的对应分析(Carr et al.,1999)等。空间自相关特征提取(Warner et al.,1997)、子空间投影(Harsanyi et al.,1994)和高维数据二阶特征分析(Lee et al.,1993;Haertel et al.,1999)也得到相应的重视。利用非线形的小波、分形特征(Qiu et al.,1999)也在研究之中。

主成分分析(PCA)是根据图像的统计特征确定变换矩阵对多维(多波段)图像进行正交线性变换,使变换后新的组分图像互不相关,并且把多个波段中有用信息尽可能地集中到少数几个组分图像中(图4-4-1)。一般地,随着主成分阶次的提高,信噪比逐渐减小。但在波段较多时并不完全符合这一规律。

为改善主成分在高光谱维中的数据处理能力,相应地利用最大噪声组分变换(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。该方法是利用图像的噪声组分矩阵(ΣNΣ-1)的特征向量对图像进行变换,使按特征值由大到小排序的变换分量所包含的噪声成分逐渐减小,而图像质量顺次提高。Σ为图像的总协方差矩阵,ΣN为图像噪声的协方差矩阵。MNF相当于所有波段噪声方差都相等时的主成分分析,因此可分为两步实现,第一步先将图像变换到一个新的坐标系统,使变换后图像噪声的协方差矩阵为单位阵;第二步再对变换后的图像施行主成分变换。此改进的算法称为“噪声调节主成分变换(NAPC)”。

对P波段的高光谱图像

Zi(x),i=1,2,…,p (4-4-1)

可以假设

Z(x)=S(x)+N(x) (4-4-2)

这里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分别为Z(x)中不相关的信息分量和噪声分量。因此,

Cov{Z(x)}=∑=∑S+∑N (4-4-3)

S和∑N分别为S(x)和N(x)的协方差矩阵。因此,可以定义第i波段噪声分量,

Var{Ni(x)}/Var{Zi(x)} (4-4-@4)

选择线形转换,MNF变换可以表示为

成像光谱岩矿识别方法技术研究和影响因素分析

在变换中,确保

成像光谱岩矿识别方法技术研究和影响因素分析

同时,为使噪声与信息分离,S(x)分别与Z(x)和N(x)正交。

图4-4-1 MNF变换的特征值曲线

MNF有两个重要的性质,一是对图像的任何波段作比例扩展,变换结果不变;二是变换使图像矢量、信息分量和加性噪声分量互相垂直。乘性噪声可通过对数变换转换为加性噪声。变换后可针对性地对各分量图像进行去噪,或舍弃噪声占优势的分量。MNF变换的特征值曲线如图4-4-1。

4.4.2.2 特征分离

在MNF变换后的特征域中不同波段具有不同物理与数学意义。比如变换后的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF变换中,通过信号与噪声分离,使信息更加集中于有限的特征集中,一些微弱信息则在去噪转化中被增强。同时在MNF转换过程中,使光谱特征向量集汇聚,增强分类信息。

图4-4-2是一些矿物光谱通过MNF变换前后的曲线剖面图,从右图可见信息与噪声分别有序地集中在一些有限的波段内。通过舍弃噪声波段或其他处理,相应地降低或消除噪声的影响。同时信息也比原始数据更易区分。

4.4.2.3 矿物识别

矿物识别主要选用光谱相似性测度的方法。基于整个谱形特征的相似性概率的大小,能有效地避免因岩石矿物光谱漂移或光谱变异而造成的单个光谱特征的不匹配,并能综合利用弱的光谱信息。

图4-4-2 矿物光谱MNF变换前后特征比较

基于整个光谱形特征的识别方法主要有光谱角技术、光谱匹配滤波、光谱拟合与线形分解等。利用大气校正后的重建光谱数据,可选择性地利用上述矿物识别技术开展端元矿物的识别。光谱角方法可直接选择端元矿物进行匹配,最终生成二值图像,简单易行,在阈值合理可靠的前提下能够获取较高的识别精度。

在成像光谱岩矿地质信息识别与提取方法中,光谱角技术是一种较好的方法之一(王志刚,1993;刘庆生,1999)。光谱角识别方法是在由光谱组成的多维光谱矢量空间,利用一个岩矿矢量的角度测度函数(θ)求解岩矿参考光谱端元矢量(r)与图像像元光谱矢量(t)的相似性测度,即:

成像光谱岩矿识别方法技术研究和影响因素分析

这里,‖*‖为光谱向量的模。参考端元光谱可来自实验室、野外测量或已知类别的图像像元光谱。θ介于0到π/2,其值愈小,二者相似度愈高,识别与提取的信息愈可靠。通过合理的阈值选择,获取矿化蚀变信息的二值图像。

4.4.2.4 阈值的选择与航带间信息的衔接

无论是光谱角技术还是光谱匹配以及混合光谱分解,都存在对非矿物信息的分割,因此阈值的选择是一个必须面临的重要问题。这不仅关系到所识别矿物的可靠度,也关系到矿物分布范围大小的界定。同时由于是分航带提取,不同航带间因大气校正的误差和噪声的影响而使同一地物的光谱特征存在差异,可能使所提取的矿物空间展布特征在航带之间所有诊断和一致性,增加了制图的困难。因此对于阈值的选择,需遵循以下原则:在去除明显假象信息、保留可靠的矿化蚀变信息情况下考虑整体的一致性以及航带的过渡性。

4.4.2.5 技术流程

结合成像光谱数据预处理,根据实际应用情况,可以总结出成像光谱遥感地质调查工作的技术流程,如图443所示。

③ 矿石鉴定分析方法和品位鉴定包含哪些项目

分析方法:显微镜鉴定法、化学分析法、X射线分析法、差热分析法等

矿石品位鉴定:矿石中有用元素或它的化合物含量比率
斯坦德检测作为一家长期与各企事业单位合作、综合型第三方检测研发机构在矿石鉴定方面拥有丰富经验。

如何鉴别各种矿石

许多坛友热衷于用最老式的矿石作检波,也看到坛友找到一些矿石发在坛上要求大家鉴别,因此本人根据自己的知识来谈一谈检波矿石的识别,希望对大家有用。
要鉴别所用的矿石前,首先让我们先认识几个名词:
1、颜色:⑴自色:是矿物本身固有的颜色,
⑵它色:矿物含有外来带色杂质混入的颜色,
⑶假色:矿物表面氧化膜的颜色称为假色;
2、条痕:就是矿物粉末的颜色,可用没有上釉的瓷板上进行划擦后的颜色即为条痕色,条痕可消除假色及减弱它色等,对矿 物的鉴别有很重要的意义;
3、光泽:指矿物的表面反光能力。可分为:
⑴金属光泽:反光能力特强,同金属制品一样光亮。
⑵其它还有半金属光泽、玻璃光泽、油脂光泽等。
4、晶形(矿物的形态,指矿物的外貌特征):可分为单体和聚合体。
⑴单体:矿物 单体的形态可分为 立方形、柱状、板状、针状、片状等,
⑵聚合体:集合体的形态是由个体和集合方式来决定的。可分为显晶集合体和隐晶集合体。
立方体:故名思义,是正方体或长方体;柱状:可分为圆柱状、方柱状等;板状,形如木板。
用放大镜放大后可认出矿物颗粒界限的为显晶集合体:
可分为:粒状集合体,由各个方向发育大致相等的晶粒组成的集合体,如方铅矿、黄铁矿等;当颗粒小到用放大镜也看不清界限时则称为致密块状,如黄铜矿等。
5、解理:是矿物晶体在外力作用下沿一定方向裂开成光滑平面的性质,所裂成的平面称为解理面,如方铅矿常裂开呈一个个立方体。
可分为:极完全解理:解理面大而光滑;
完全解理:解理面平滑,常裂成有规则的解理块如方铅矿为完全立方体制解理;
中等解理:较完全解理差,在矿物碎块中可看到解理面又可看到断口;
其它还有不完全解理、极不完全解理。
6、断口:矿物受力后不沿一定方向破裂,而呈断口状。
其它还有硬度、比重,导电性、磁性等等,就不多说了。

⑤ 任务了解矿物鉴定的常用方法

一、鉴定矿物的化学方法

矿物鉴定的化学方法包括简易化学分析和化学全分析。

(一)简易化学分析法

简易化学分析法,就是以少数几种药品,通过简便的试验操作,能迅速定性地检验出样品 (待定矿物)所含的主要化学成分,达到鉴定矿物的目的。常用的有斑点法、显微化学分析法及珠球反应等。

1.斑点法

这一方法是将少量待定矿物的粉末溶于溶剂 (水或酸)中,使矿物中的元素呈离子状态,然后加微量试剂于溶液中,根据反应的颜色来确定元素的种类。这一试验可在白瓷板、玻璃板或滤纸上进行。此法对金属硫化物及氧化物的效果较好。

现以测试黄铁矿中是否含镍 (Ni)为例,说明斑点法的具体做法。将少许矿粉置玻璃板上,加一滴HNO3并加热蒸干,如此反复几次,以便溶解进行完全,稍冷后加一滴氨水使溶液呈碱性,并用滤纸吸取,再在滤纸上加一滴2%的二甲基乙二醛肟酒精溶液(镍试剂),若出现粉红色斑点 (二甲基乙二醛镍),表明矿物中确有镍的存在。因此该矿物应为含镍黄铁矿。

2.显微化学分析法

该法也是先将矿物制成溶液,从中吸取一滴置载玻片上,然后加适当的试剂,在显微镜下观察反应沉淀物的晶形和颜色等特征,即可鉴定出矿物所含的元素。

这种方法用来区别某些相似矿物是很有效的,例如呈致密块状的白钨矿Ca[WO4]与重晶石Ba[SO4]相似,此时只要在前者的溶液中滴一滴1∶3H2SO4,如果出现石膏结晶(无色透明,常有燕尾双晶),表明要鉴定的矿物为白钨矿而不是重晶石。

3.珠球反应

这是测定变价金属元素的一种灵敏而简易的方法。测定时将固定在玻璃棒上的铂丝之前端弯成一直径约为1mm的小圆圈,然后放入氧化焰中加热。清污后趁热粘上硼砂 (或磷盐),再放入氧化焰中煅烧,如此反复几次,直到硼砂熔成无色透明的小球为止。此时即可将灼热的珠球粘上疑为含某种变价元素的矿物粉末 (注意!一定要少),然后将珠球先后分别送入氧化焰及还原焰中煅烧,使所含元素发生氧化、还原反应,借反应后得到的高价态和低价态离子的颜色来判定为何种元素。例如在氧比焰中珠球为红紫色,放入还原焰中煅烧一段时间后变为无色时,表明所试样品应为含锰矿物,具体矿物的名称可根据其他特征确定之。

(二)化学全分析

化学全分析包括定性和定量的系统化学分析。进行这一分析时需要较为繁多的设备和标准试剂,需要较纯 (98%以上)和较多的样品,需要较高的技术和较长的时间。因此,这一方法是很不经济的,除非在研究矿物新种和亚种的详细成分、组成可变矿物的成分变化规律以及矿床的工业评价时才采用。通常在使用这一方法之前,必须进行光谱分析,得出分析结果以备参考。

二、鉴定矿物的物理方法

矿物鉴定的物理方法是以物理学原理为基础,借助各种仪器测定矿物的各种物理性质来鉴定矿物。主要方法有:

1.偏光显微镜和反光显微镜鉴定法

偏光显微镜鉴定方法是根据晶体的均一性和异向性,并利用晶体的光学性质而鉴定矿物的方法。应用这种方法时,须将矿物、岩石磨制成薄片,在透射光作用下,观察和测定矿物的晶形、解理和各项光学性质 (颜色、多色性、突起、干涉色、折射率、双折射、消光类型、消光角、延性符合以及轴性、光性符号等)。

反光显微镜 (也称矿相显微镜)主要用以观察和测定不透明矿物 (金属矿物)的光学性质 (矿物的反射率、双反射率、反射色、反射多色性、内反射等),以确定矿石矿物成分、矿石结构、构造及矿床成因方面的问题。

2.电子显微镜研究法

电子显微镜研究法是一种适宜于研究粒度在1μm以下的微粒矿物的方法,尤以研究粒度小于5μm的具有高分散度的黏土矿物最为有效。可分为扫描电子显微镜和透射电子显微镜两种方法。

黏土类矿物由于颗粒极细 (一般2μm左右),常呈分散状态,研究用的样品需用悬浮法进行制备,待干燥后,置于具有超高放大倍数的电子显微镜下,在真空中使通过聚焦系统的电子光束照射样品,可在荧光屏上显出放大数十万倍甚至百万倍的矿物图像,据此以研究各种细分散矿物的晶形轮廓、晶面特征、连晶形态等,用此来区别矿物和研究它们的成因。

此外,超高压电子显微镜发出的强力电子束能透过矿物晶体,这就使得人们长期以来梦寐以求的直接观察晶体结构和晶体缺陷的愿望得到实现。

3.X射线分析法

X射线分析法是基于X射线的波长与结晶矿物内部质点间的距离相近,属于同一个数量级(Å),当X射线进入矿物晶体后可以产生衍射。由于每一种矿物都有自己独特的化学组成和晶体结构,其衍射图样也各有其独有的特征。对这种图样进行分析计算,就可以鉴定结晶矿物的相 (每个矿物种就是一个相),并确定它内部原子 (或离子)间的距离和排列方式。因此,X射线分析已成为研究晶体结构和进行物相分析的最有效方法。

4.光谱分析

光谱分析法的理论基础是,各种化学元素在受到高温光源 (电弧或电火花)激发时,都能发射出它们各自的特征谱线,经棱镜或光栅分光测定后,既可根据样品所出现的特征谱线进行定性分析,也可按谱线的强度进行定量分析。这一方法是目前测定矿物化学成分时普遍采用的一种分析手段。其主要优点是样品用量少 (数毫克),能迅速准确地测定矿物中的金属阳离子,特别是对于稀有元素也能获得良好的结果。缺点是仪器复杂昂贵,并需较好的工作条件。

5.电子探针分析

电子探针分析是一种最适用于测定微小矿物和包体成分的定性、定量以及稀有元素、贵金属元素赋存状态的方法。其测定元素的范围由从原子序数为5的硼直到92的铀。仪器主要由探针、自动记录系统及真空泵等部分组成,探针部分相当于一个X射线管,即由阴极发出来的高达35~50kV的高速电子流经电磁透镜聚焦成极细小 (最小可达0.3μm)的电子束——探针,直接打到作为阳极的样品上,此时,由样品内所含元素发生的初级X射线 (包括连续谱和特征谱),经衍射晶体分光后,由多道记数管同时测定若干元素的特征X射线的强度,并用内标法或外标法算出元素含量。

6.红外吸收光谱

简称红外光谱,是在红外线的照射下引起分子中振动能级 (电偶极矩)的跃迁而产生的一种吸收光谱。由于被吸收的特征频率取决于组成物质的原子量、键力以及分子中原子分布的几何特点,即取决于物质的化学组成及内部结构,因此每一种矿物都有自己的特征吸收谱,包括谱带位置、谱带数目、带宽及吸收强度等。

红外吸收光谱分析样品一般需要1.5mg,最常使用的制样方法是压片法,即把试样与KBr一起研细,压成小圆片,然后放在仪器内测试。

目前红外吸收光谱分析在矿物学研究中已成为一种重要的手段。根据光谱中吸收峰的位置和形状可以推断未知矿物的结构,是X射线衍射分析的重要辅助方法,依照特征峰的吸收强度来测定混入物中各组分的含量。此外,红外光谱分析对考察矿物中水的存在形式、配阴离子团、类质同象混入物的细微变化和矿物相变等方面都是一种有效的手段。

三、鉴定矿物的物理-化学方法

当前用于矿物鉴定最主要的物理-化学方法有热分析、极谱分析及电渗分析等。其中,热分析是一种较为普遍的方法,几乎适用于各类矿物,特别是对黏土矿物,以及碳酸盐、硫酸盐、氢氧化物矿物的鉴定最为有效。

热分析法是根据矿物在不同温度下所发生的脱水、分解、氧化、同质多象转变等热效应特征,来鉴定和研究矿物的一种方法。它包括热重分析和差热分析。

1.热重分析

热重分析是测定矿物在加热过程中的质量变化来研究矿物的一种方法。由于大多数矿物在加热时因脱水而失去一部分质量,故又称失重分析或脱水试验。用热天平来测定矿物在不同温度下所失去的质量而获得热重曲线。曲线的形式决定于水在矿物中的赋存形式和在晶体结构中的存在位置。不同的含水矿物具有不同的脱水曲线。

这一方法只限于鉴定、研究含水矿物。

2.差热分析

矿物在连续地加热过程中,伴随物理—化学变化而产生吸热或放热效应。不同的矿物出现热效应时的温度和热效应的强度是互不相同的,而对同种矿物来说,只要实验条件相同,则总是基本固定的。因此,只要准确地测定了热效应出现时的温度和热效应的强度,并和已知资料进行对比,就能对矿物做出定性和定量的分析。

差热分析法的具体工作过程是,将试样粉末与中性体 (在加热过程中不产生热效应的物质,通常用煅烧过的Al2O3)粉末分别装入样品容器,然后同时送入一高温炉中加热。

由于中性体是不发生任何热效应的物质,所以在加热过程中,当试样发生吸热或放热效应时,其温度将低于或高于中性体。此时,插在它们中间的一对反接的热电偶 (铂-铑-铂热电偶)将把两者之间的温度差转换成温差电动势,并借光电反射检流计或电子电位差计记录成差热曲线。

图1-1中的实线曲线为高岭石的差热曲线,其横坐标表示加热温度 (℃),纵坐标表示发生热效应时样品与中性体的温度差 (ΔT)。高岭石的差热曲线特点是:在580℃时,由于结构水 (OH)-的失去和晶格的破坏而出现一个大的吸热谷,980℃时,因新结晶成γ-Al2O3,而显出一个尖锐的放热峰。

图1-1 高岭石差热曲线(1)和脱水曲线(2)

差热分析的优点是样品用量少 (100~200mg),分析时间短 (90min以下),而且设备简单,可以自行装置。缺点是许多矿物的热效应数据近似,尤其当混合样品不能分离时,就会互相干扰,从而使鉴定工作复杂化。为了排除这种干扰,应与其他方法 (特别是X射线分析)配合使用。

对非专业鉴定人员而言,主要是根据工作的目的、要求和具体条件,正确地选择适当而有效的测试方法 (表1-1),按送样要求进行加工,并正确地使用测试结果。

表1-1 矿物鉴定方法的选择

续表

以上介绍的是目前最常使用的方法,其他方法还很多,如中子活化分析、核磁共振、顺磁共振、穆斯堡尔效应、包裹体研究、稳定同位素研究等,需要时可查阅专门资料。

学习指导

通过学习情境的学习了解矿物鉴定的基本方法,目的是为了我们在今后工作中知道怎样去鉴定矿物,并不要求我们掌握所有的鉴定方法,目前只需要掌握肉眼鉴定和简易化学试验方法即可,但要知道鉴定矿物的一般步骤、正确选择鉴定方法。

练习与思考

1.名词解释

矿物 矿物鉴定 肉眼鉴定 仪器鉴定

2.选择题

(1)确定矿物的外部特征采用哪种方法? ()

A.肉眼鉴定法

B.显微镜

C.化学分析

D.核磁共振

(2)测定矿物的化学成分用哪种方法? ()

A.均一法

B.光谱分析

C.热分析

D.质谱分析

(3)测定矿物某种物性或晶体结构数据采用哪种方法? ()

A.冷冻法

B.简易化学分析法

C.电子显微镜

D.中子活化分析

3.简答题

(1)怎样鉴定矿物? 怎样选择矿物鉴定方法?

(2)肉眼鉴定矿物时应注意的问题?

⑥ 矿物的简易鉴定

矿物的简易鉴定方法包括野外人工或肉眼鉴定和室内辅助设备鉴定。在室外或野外,大部分常见矿物一般都可以用简易的方法进行初步的人工鉴定。笔者根据多年的经验,把常见矿物的简易鉴定方法总结为“看、摸、刻、掂”。

4.4.1 “看”

观察矿物晶体的外形、颜色、光泽、透明度、解理和其矿物组合是识别鉴定矿物最基本、最重要的步骤。这些观察内容是矿物主要物理性质的反映。

(1)颜色

这是鉴定矿物最大的特征之一。不少矿物是根据其颜色来命名的。矿物的颜色可以分成三种:矿物中主要的化学元素显示色,代表其固有的特征色,称为自色,是鉴定矿物的可靠依据,例如蓝铜矿为蓝色,孔雀石为绿色; 有的矿物表面的氧化或水化膜或裂缝等造成光线干涉所表现出来的彩虹状色,称为假色,用来鉴定矿物的辅助色,例如金属矿物表面常见锖色; 矿物中微量元素或杂质所引起的颜色叫他色,例如水晶的自色为无色透明,但含铁质时呈红色,含有机质时呈黑色,所以他色不能用来鉴定矿物。

绿色的孔雀石

蓝色的蓝铜矿

(2)外形

矿物外形反映了结晶习性。而结晶习性可用晶体在三维空间上的发育程度来描述。如果单晶体在三维空间中朝一个方向特别发育,形成柱状、针状或长条状矿物,如柱状电气石、针状文石、长条状辉锑矿。如果晶体朝着两个方向生长,则形成片状、板状矿物,如片状云母、板状重晶石等。如果单体在三维空间的发育程度基本相同,则形成三向等长的矿物,多呈等轴状,如立方体黄铁矿、粒状石榴子石等。

重晶石

云母

辉锑矿

电气石

黄铁矿石

石榴子石

黄玉晶面上的竖纹

水晶晶面上的横纹

(3)矿物的透明度和光泽

透明度取决于矿物的化学组成和内部结构,根据其透光能力,可以将矿物分为透明、半透明和不透明矿物。所有珍贵的宝石半宝石矿物都是透明或半透明晶体,如红宝石、水晶、海蓝宝石晶体等。而大部分金属矿物均是不透明的,如磁铁矿、黄铁矿、辉锑矿等。

透明的海蓝宝石

不透明的磁铁矿

(4)光泽

光泽是矿物的又一重要属性。按强度依次分为金属光泽、半金属光泽、金刚光泽、玻璃光泽、丝绢光泽、油脂光泽、树脂光泽、珍珠光泽、土状光泽。不同的矿物有不同的光泽,例如毒砂、黄铁矿等硫化物矿物有很强的金属光泽; 而石膏、云母显现丝绢光泽; 一些方解石显示油脂光泽; 水晶、萤石显示玻璃光泽等,一般而言,金属光泽、半金属光泽和土状光泽的矿物都是不透明矿物,而玻璃光泽、油脂光泽和金刚光泽的矿物大都是半透明或透明矿物。

萤石的玻璃光泽

石膏的丝绢光泽

方解石的油脂光泽

毒砂的金属光泽

(5)晶面生长纹

矿物晶体的实际晶面虽然平整光滑,但大都发育了各种细小的线状纹饰,这些纹饰主要是晶面条纹、晶面螺纹等生长纹和多次结晶形成的晶面阶步与棱面。不同的矿物有不同的结晶习性,从而产生了不同的晶面纹,比如水晶晶面上常见横纹,黄玉晶面上常见有竖纹。有些矿物还发育了后期受物理挤压和化学腐蚀所形成的各种蚀象,反映了它们的物理、化学特性。

通过仔细观察矿物的以上特征,结合查阅有关的矿物鉴定手册或书籍,可以基本上确定矿物的大致类型,然后再用以下手段来做进一步的矿物确认。

发育晶面条纹的黄铁矿晶体

4.4.2 “摸”

用手摸晶体可以确定矿物的晶面、晶纹、解理、裂理和断口等物理特征。有不少矿物能够通过触摸来判断其类型。

解理是晶体在外力作用下沿一定方向(结晶面)规则破裂的一种性质,其破裂面被称为解理面。解理面一般较平整光滑,与晶面的区别是无晶纹发育而常见多层细小断裂台阶,与断口的区别是破裂面规则平整、相互平行。有些矿物只有一组单方向的解理,破裂后呈板状、薄片状,如云母等。有些矿物有两个方向的两组解理,破裂后呈块状,如方解石、菱锰矿。还有些矿物有三个甚至四个方向以上的多组解理,破裂后呈菱形或锥状至双锥状,如萤石等。根据矿物沿解理方向开裂的难易程度,矿物解理可以划分为完全解理(极易开裂)、中等程度解理、弱解理和无解理(无解理面只有断口)。

断口是指晶体受打击后产生的不规则破裂面。由于晶体内部结构的不同,断口的类型也不同,从而可以用来鉴定矿物,断口一般可分为:

贝壳状断口。断面呈弯曲的凸面或凹面,并具同心弧状构造,像贝壳,如水晶的断口。

平坦状断口。断面平坦,但不光滑,如高岭石的断口。

参差状断口。断面不规则,极其粗糙,如电气石的断口。

锯齿状断口。呈尖锐而起伏的锯齿状,许多金属矿物和丝发状矿物具有此特征,如辉锑矿、石膏、石棉等的断面。

凭手感还可以根据矿物表面光滑程度来确定某些矿物类型,一些硬度较低的矿物如辉钼矿、蛇纹石、滑石、石墨和其他黏土矿物都具有滑溜的感觉,而自然铜、锑华、孔雀石等矿物表面则有粗糙感。

辉钼矿

滑石

4.4.3 “刻”

用未知矿物晶体去刻划、挤压已知矿物或器具,可以了解到被鉴定矿物的硬度、弯挠性、延展性和条痕色等特征。在应用本方法时,一定要注意不要破坏晶体的完整性,要用碎片或矿晶的裂面、背面或底面去刻试。

矿物硬度是鉴定矿物最有效、最常用的特征。硬度确定方法通常是用未知矿物晶体去刻划已知硬度的晶体或硬度计,矿物硬度常采用10级来划分(摩氏硬度,简称硬度)。从极软到极硬的标准矿物为:1.滑石;2.石膏; 3.方解石; 4.萤石; 5.磷灰石; 6.正长石; 7.石英; 8.黄玉;9.刚玉; 10.金刚石。

如果没有现成的标准硬度矿物,可以采用一些简便的工具来进行划刻。如指甲的硬度为2~2.5,铜钥匙硬度为3,小刀硬度为5~5.5,玻璃硬度为6,划玻璃刀硬度为9~10。

矿物的条痕色是指矿物在白瓷板(瓷碟)等物品上刻划留下来的条痕的颜色,它往往比矿物的颜色更能反映矿物晶体的本色。矿物颜色常常受光泽、光线、氧化层和表面污染物的影响,而条痕色代表矿物粉末的自色。例如赤铁矿的颜色可以是黑色、灰色和紫红色,但其条痕色永远是樱红色。

通过刻压矿物晶体还可以确定矿物的塑性和弹性(又称挠性)。前者表示晶体被挤压变形后,不能恢复原状,如滑石、绿泥石、蛭石等矿物具有明显的塑性。后者是指晶体刻压时变形,压力撤除后又能恢复原状的特征,如云母等矿物均具有此特征。

4.4.4 “掂”

通过用手掂矿物的质量可以估计出晶体的比重。矿物比重是矿物质密度的反映,也是鉴定矿物的最主要参数之一。根据比重大小一般把矿物分为轻、中、重三类:前者比重小于2.5; 中者为2.5~4; 后者大于4。在野外主要凭手掂矿物的感觉与经验来比较不同矿物的比重而确定矿物类型,如重晶石与方解石的区别是前者重,后者轻; 锡石和闪锌矿的区别也是如此。严格的比重测定一般采用排水法,即先称一下矿物质量,然后再在水中称其质量,并用下列公式计算其比重:

比重=空气中质量/(空气中质量—水中质量)

比重一词是非法定计量单位,已不再使用,而用相对密度(简称密度)代替,本书一律使用密度一词。

通过看、摸、刻、掂,了解矿物特征,并通过查阅矿物鉴定手册和书籍,可以将常见的矿物识别或确定其大概范围。有些矿物还具有一些特殊的性质,可以轻易地鉴别,如自然硫、煤、琥珀的可燃性,雄黄的变色性,光卤石、石盐、石膏等的可溶性。还有,燃烧自然硫与黄铁矿、捶击毒砂时可发出臭味的特征等,均是矿物简易鉴定的好方法。

此外,对于较难识别的矿物还可以借助实验室工具与设备作进一步鉴定,如利用一些化学试剂、火焰烧试、显微镜观察等手段。例如,用稀盐酸可以鉴定方解石、文石、白云石等碳酸盐类矿物,方解石、文石遇酸起泡明显; 白云石起泡不明显,但放到耳边可听到起泡声。

对于疑难矿物,则需要请专业人员采用实验室鉴定方法,如化学分析、X光粉晶衍射分析、电子显微镜观察等。

⑦ 鉴别矿物方法有哪些

手标本和显微镜

⑧ 岩矿鉴定方法

岩矿鉴定:
是指应用各种矿物学原理与方法,通过矿物的光、电、声、热、磁、重、硬度、气味等以及其主要的化学成分特征,对岩石、矿物样品旦衫、包括光(薄)片、砂片、碎屑、粉末进行观察、鉴定以区别其矿物类别,以及研究岩石、矿石的主要矿物组成、矿物成生序列,结构、构造、岩(矿)石类型的技术方法。
光学显微镜法:
(1)偏光显微镜祛将矿物或岩石标本磨制成薄片,在偏光显微镜下鉴定矿物的光学性质,确定岩石的矿物成分,确定岩石类型及其成因特征,最后定出岩石名称的工作,又称岩石薄片鉴定法。
这是研究矿物岩石最常用的方法。可以获得矿物的颜色、形状、大小、折光率、消光角、重折率、干涉色、轴性、光轴角等光学常数,还能获得矿物的形成顺序、次生变化、体积百分含量以及岩石的结构构造、胶结类型等特征,进而对岩石进行正确的定名。为了获取更精确的光轴角、消光角数据、折光率数据,
可再选用费氏台法、油浸法或干涉显微镜法等。
(2)反光显微镜法。主要用于金属矿物及矿石的研究,还广泛应用于非金属材料的研究。
热分析方法:
该方法是根据在热处理过程中发生的热效应(如吸热、放热)来鉴定矿物或混合物的组成。常用的方法有差热分析和综合热分析。
电子显微镜分析:
常用的仪模缓腔器有透射电镜(TEM)、扫描电镜(SEM)、电子探针(EPMA)等。
X射线物相分析:
对哪芹结晶物质的物相进行分析的一种有效方法
谱学分析:
1、谱学方法有数十种,在矿物学.上常用的有红外光谱、拉曼光谱、穆斯堡尔谱、核磁共振被谱等。
2、以红外光谱为例,每种矿物都有自己的特征光谱,红外光谱就是利用矿物的特征谱线监定未知矿物及混合物中主要组成矿物的定量确定,研究矿物类质同像置换、有序一无序现象、水的存在形式、标型特征等。

⑨ 地质学家是怎么样鉴别矿物

搞地质的一般是成因按岩石三大类:沉积岩、岩浆岩和变质岩来进一步划分,这些需要有专业基础知识,对于新区块,需做好区域资料收集工作。先将岩石大类查明。

1、沉积岩:是在地表或近地表通过自然沉积或冲蚀、风蚀堆积而形成的一种岩石类型。它是由风化产物、有机物质碎屑等物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。这类岩石在野外一般通过敲击、研磨,用放大镜观察碎屑物成分、粒度、充填物、胶结物质等,最后根据不同粒度含量来命名。如陌生岩石,会采取样品,送实验室进行岩矿鉴定来鉴别;
2、岩浆岩:也叫火成岩,是在地壳深处或在上地幔中形成的岩浆,在侵入到地壳上部或者喷出到地表冷却固结并经过结晶作用而形成的岩石。因为它生成的条件与沉积岩差别很大,因此,它的特点也与沉积岩明显不同。这一类岩石一般特点较明显,观察岩石的颜色、结构、构造、矿物成分及其含量、最后确定岩石名称。对于肉眼不能分别的微晶矿物岩石,则需要采样做岩矿鉴定。
3、变质岩:是三类岩石中最难辨认的岩石,这类岩石原岩为沉积岩和岩浆岩,因地质环境和物理化学变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化后形成一种新的岩石叫变质岩。变质岩广泛存在,也是最难辨认的岩石种类,主要通过颜色、矿物成分,结构构造来分辨,变质岩的颜色常不均一,需定总体色调。结构主要为变质结构,也有变余结构。这个区分难度较大,野外通过刀划、放大镜、敲击的方法来初步定名,多采用岩矿鉴定来确定。

阅读全文

与矿业的鉴别方法相关的资料

热点内容
24乘205简便运算方法 浏览:335
1万小时定律训练方法 浏览:598
快速让肉溶化的方法 浏览:309
刘邦快速脱单的方法 浏览:246
红芸豆的功效与作用及食用方法 浏览:233
眼药水的正确使用方法 浏览:647
楼下有叫卖声有什么方法对付吗 浏览:516
开口扳手的使用方法图片 浏览:625
手串正确佩戴方法 浏览:412
瑜伽快速燃脂的方法 浏览:780
活期和定期计算方法 浏览:144
研究方法论的基本分析 浏览:650
三成仓的正确使用方法 浏览:198
现代革命传统教育的教学方法 浏览:879
孤独症的训练方法 浏览:412
兔球虫病有什么土方法治疗 浏览:841
腮腺肿瘤早期治疗方法 浏览:168
中医对中暑治疗方法 浏览:214
pico方法研究问题举例 浏览:308
有优力防水怎么使用方法 浏览:40