基因是遗传的基本单元,携带有遗传信息的DNA或RNA序列,通过复制,把遗传信息传递给下一代,指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表达。基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术,是取被检测者外周静脉血或其他组织细胞,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA分子信息作检测,分析它所含有的基因类型和基因缺陷及其表达功能是否正常的一种方法,从而使人们能了解自己的基因信息,明确病因或预知身体患某种疾病的风险。
基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。
一般有三种基因检测方法:生化检测、染色体分析和DNA分析。
1.生化检测
生化检测是通过化学手段,检测血液、尿液、羊水或羊膜细胞样本,检查相关蛋白质或物质是否存在,确定是否存在基因缺陷。用于诊断某种基因缺陷,这种缺陷是因某种维持身体正常功能的蛋白质不均衡导致的,通常是检测测试蛋白质含量。还可用于诊断苯丙酮尿症等。
2.染色体分析
染色体分析直接检测染色体数目及结构的异常,而不是检查某条染色体上某个基因的突变或异常。通常用来诊断胎儿的异常。
常见的染色体异常是多一条染色体,检测用的细胞来自血液样本,若是胎儿,则通过羊膜穿刺或绒毛膜绒毛取样获得细胞。将之染色,让染色体凸显出来,然后用高倍显微镜观察是否有异常。
3.DNA分析
DNA分析主要用于识别单个基因异常引发的遗传性疾病,如亨廷顿病等。DNA分析的细胞来自血液或胎儿细胞。
基因检测可以分为以下五类:
1.基因筛检
主要是针对特定团体或全体人群进行检测。大多数通过产前或新生儿的基因检测以达到筛检的目的。
2.生殖性基因检测
在进行体外人工授精阶段可运用,筛检出胚胎是否带有基因变异,避免胎儿患有遗传性疾病。
3.诊断性检测
多数用来协助临床用药指导。
4.基因携带检测
基因携带者如果与某些特殊基因相结合,可能会导致下一代患基因疾病,通过基因携带者的检测可筛检出此种可能,作为基因携带者婚前检查、生育时的参考。
5.症状出现前的检测
检测目的是了解健康良好者是否带有某种突变基因,而此基因与特定疾病的发生有密切的联系。
临床意义
1.用于疾病的诊断
如对结核杆菌感染的诊断,以前主要依靠痰、粪便或血液培养,整个检验流程需要在两周以上,采用基因诊断的方法,不仅敏感性大大提高,而且在短时间内就能得到结果。
2.了解自身是否有家族性疾病的致病基因,预测患病风险
资料证实10%~15%的癌症与遗传有关,糖尿病、心脑血管疾病等多种疾病都与遗传因素有关。如具有癌症或多基因遗传病(如老年痴呆、高血压、糖尿病等)的人可找出致病的遗传基因,就能够有针对性地调整生活方式,预防或者延缓疾病的发生。
3.正确选择药物,避免滥用药物和药物不良反应
由于个体遗传基因上的差异,不同的人对外来物质产生的反应也会有所不同,因此部分患者使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象。根据基因检测的结果,可制定特定的治疗方案,从而科学地指导使用药物,避免药物毒副反应。
② 如何检查胎儿遗传病
一些患有遗传疾病或家族遗传病史的夫妻在怀孕之后一再要求专家为其做染色体检查,其实,完全没有这个必要,并不是所有的遗传疾病都要查染色体的。 遗传病分三种,单基因遗传病、多基因遗传病和染色体病。其中大多数单基因病、多基因病的染色体没有出现畸变,因此,不能从染色体检查获得诊断信息。而像单基因病血友病(X性连锁隐性遗传病),如果能追问出家系中存在有一定规律的、多个出血不止的亲属,那么不做染色体检查,光凭家系分析便可明确诊断。所以,只有怀疑是典型染色体病的患儿及双亲;具有两种以上的先天畸形患者;染色体病患者的双亲、子女、同胞及其他亲属;有习惯性流产和死胎史的夫 专家给这对夫妇提出的建议是,没有必要做染色体检查,但应做好产前诊断。 检测遗传疾病的方法很多,根据遗传疾病的类别不同也要采取不同的检查方式,并不一定都要检查胎儿的染色体才能得知。
③ 遗传多样性的检测方法
检测遗传多样性的方法随生物学尤其是遗传学和分子生物学的发展而不断提高和完善。从形态学水平、细胞学(染色体)水平、生理生化水平、逐渐发展到分子水平。然而不管研究是在什么层次上进行,其宗旨都在于揭示遗传物质的变异。任何检测遗传多样性的方法,或在理论上或在实际研究中都有各自的优点和局限,还找不到一种能完全取代其它方法的技术。因此,包括传统的形态学、细胞学以及同工酶和DNA 技术在内,各种方法都能提供有价值的资料,都有助于我们认识遗传多样性及其中的生物学意义。
④ 皮肤移植法应用于近交系实验动物的遗传质量检测中,是因为什么原理
主要来讲近交系是近交程度达20代以上;而封闭群动物则只需4代 我又苦苦整理了一下内容 仔细看:近交系: 基因纯合性,在一个近交系内的所有动物的基因位点都应当是纯合子,在本品系内任何个体交配的后代也应当是纯合子,即基因型一致,遗传特性相同。从理论上说,这些动物是不应有暗藏的隐性基因的,用近交系动物做实验时,不会因为隐性基因的暴露而影响实验结果的一致性。 表现型的一致性,由于上述的特点,近交系动物任何可遗传的体征都应是一致的,如生理、生化以及组织学、形态学上的特征(毛色、体重等),甚至行为的类型都趋于一致。如果说,在个体间有时会出现一些差异,也只可能是后天环境不同一而造成的。遗传稳定性和反应敏感性,近交系是由近亲交配 20 代以上育成的,遗传性是稳定的。近交系被确认后,只要坚持近交,并不断监测,基因变异的机率是很低的。由于近交系动物的遗传是高度纯合的,对外部各种因素(包括试验因子)的影响,反应高度敏感。这类动物有如高精密度的天平,外界微小的变化,天平就会摆动。 遗传特征的可辩别性,在同一近交系中,不应存在遗传多态现象。在绝大多数近交系中主要的遗传位点已有了分型,通过遗传检测可以对动物的品系进行辩认,有利于对品系遗传纯合性的维持。意义:由于近交系具有良好的、适合实验要求的遗传特性,被用在众多的实验领域,而且可减少每批次实验的动物用量,容易获得有统计学意义的实验数据。它们是胚胎学、生理学、遗传学研究的理想材料,也用于药效试验、安全评价等的动物实验。进行组织或肿瘤移植实验时,制作某些有遗传因素的人类疾病的动物模型时,近交系是必不可少的材料。 封闭群动物封闭群动物在遗传上具有一定的杂合性,因而这类动物繁殖力高,适应能力强,保种及繁殖生产的成本较低,应用范围广。与近交系相比,封闭群动物的个体在遗传上仍存在相当的差异,因此实验的可重复性,及反应的一致性就不如近交系动物。但是,封闭群动物在实验中,却有比近交系更接近自然种群反应的特点。所以在实际中,封闭群动物被广泛地应用于教学、预实验、一般的药物初筛、以及毒性、安全性评价试验之中。
⑤ 遗传病诊断有哪些方法和步骤
自从1985年PCR技术首次应用于遗传病基因诊断以来,已有近百种遗传病可用PCR 技术进行诊断和产前诊断,利用PCR技术诊断遗传病的途径有五个,①基因突变位点 的直接检出②筛查与遗传病③④有关的点突变③遗传多态性标记连锁分析间接诊断④ 利用cmRNA逆转录为cDNA进行分析或直接分析cmRNA.
传统的基因诊断技术主要是以基因探针技术为基础而建立的一些检测方法,包括 Southerninnouthern印迹杂交,RFLP为,它们可直接分析基因的缺失和重排,亦可利 用RFLP时行连锁分析,但由于这些技术操作繁琐,探针来源困难所需设剂昂贵,且要 用同抗素.完成一项诊断需要的时间亦较长,因此难于满足临床诊断的要求.限制了它 在临床上的应用.PCR技术是一种在体外的海促DNA合成技术,它能在短时间内将靶DNA 扩增百万倍,而且操用简便,省时,准确性也高,它不仅能直检突变基因,而且可与 其它技术结合,使其诊断的准确性几达100%.而且不同同位素操作.能最大限度的满足 临床诊断的需要.因而它已成为目前遗传病诊断的产前诊断的主要手段.
系谱分析
在遗传病诊断时进行系谱分析有助于区分单基因病和多基因病,以及属于哪一种遗传方式;有助于区分某些表型相似的遗传病以及由于遗传性而出现的不同遗传方式。进行系谱分析应注意下列问题:①系谱的系统性、完整性和可靠性。系谱分析时必须有一个系统完整和可靠的系谱,否则可以导致错误的结论。完整的系谱应有三代以上有关患者及家庭的情况。有关成员要逐个查询,特别是关键不可遗漏,死亡者(包括婴儿死亡)须查清死因,是否近亲婚配、有无死胎、流产史,并记录在系谱中。在家系调查过程中避免由于患儿或代诉人不合作或提供假情况,例如不愿提供重婚、非婚子女、同父异母、同母异父、养子养女等,以致错给系谱,必要时应对患者亲属进行实验室检查和其他辅助检查使诊断更加可靠。②分析显性遗传病时,应注意对已知有延迟显性的年轻患者,由于外显不全而呈现隔代遗传现象进,不可误认为是隐性遗传。③新的基因突变。有些遗传家系中除先证者外,家庭成员中找不到其他的患者,因而很困难从系谱中判断其遗传方式,更不可因患者在家系中是“散发的”而定为常染色体隐性遗传。如假肥大型肌营养不良是一种致死的X连锁隐性遗传病,约有1/3的病例为新的基因突变引起。④显性与隐性概念的相对性。同一遗传病可采用的观察指标不同而得出不同的遗传方式,从而导致发病风险的错误估计。如镰形细胞贫血症在临床水平,纯合子(HbSHbs)有严重的贫血,而杂合子(HbAHbs)在正常情况下无贫血,因此,这时突变基因(HbS)对HbA来说被认为是隐性的;然而,当杂合子的红细胞处于氧分压低的情况下,红细胞亦可形成镰刀状,所以在细胞数目水平,观察红细胞呈现镰刀状,此时Hbs对HbA来说是显性的。但从镰形细胞数目理解,来自杂合子的红细胞形成少量镰形细胞,其数目介于正常纯合子(HbAHbA)与突变基因纯合子(HbSHbs)之间故呈不完全显性遗传。遗传方式不同,对后代复发风险估计也应不同。
此外,在系谱分析统计子女发病比值时应校正因统计带来的偏倚。
⑥ 实验动物遗传质量检测常用的技术和方法
实验动物遗传质量检测常用的技术和方法有:
尾部皮肤移植法:
这是目前最常用和最灵敏的检测亚系内或亚系间组织相容性基因差异的方法。在小鼠和大鼠中普遍采用的是尾部或背部皮肤移植法。皮肤移植法灵敏度高、易掌握、经济、不需昂贵设备、易对植皮成活作出估计,对移植创伤具有相对抗力、可检测出许多H基因、并能有效地测出新发生的、造成亚系变异的遗传混杂和突变。
小鼠生化标记基因监测:
通过多种形式的电泳和电聚集,可检定生化标记即同功酶或蛋白质,常用的电泳介质有乙酸纤维素膜、淀粉凝胶、聚丙烯酰胺凝胶。每一种标记系统都需要将缓冲液、温度、时间、电压和电流调整到最佳值,并作特异性染色,最后将得到的带型与公布的生化遗传图式进行比较。
⑦ 检测遗传多样性最可靠的方法
检测遗传多样性最简单的方法是聚合酶链反应(简称PCR),最可靠的方法是测定不同亚种、不同种群的基因组全序列.
故选:D.