导航:首页 > 解决方法 > 硼酸液相色谱的检测方法

硼酸液相色谱的检测方法

发布时间:2023-06-10 11:38:55

‘壹’ 高效液相色谱法测定维生素c的含量为什么用棕色瓶容量瓶

1.滴定法测定维生素C
1.1测定原理
2,6一二氯靛酚法和碘量法是较常见的滴定测定维生素C的方法。还原型抗坏血酸还原染料2,6一二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型抗坏血酸还原2,6一二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样品提取液还原标准2, 6-二氯靛酚的量与样品中所含维生素C的量成正比。
碘量法的原理:维生素C包括氧化型、还原型和二酮古乐糖酸三种,当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子,随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现。碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点。
1.2测定操作
2,6一二氯靛酚法:取适量的样品可食部,加入100 mL 2%草酸溶液,制成匀浆。取同一样品匀浆10g,加入1%草酸溶液20 mL,摇匀,用滤纸过滤,取5mL过滤液于锥形瓶中,用2,6一二氯靛酚钠盐溶液滴定(1 mL≈0.02 mgVitC),以淡红色存在30 s内不褪色为滴定终点。记录2,6-二氯酚靛酚钠盐溶液的消耗量,根据结果计算出样品中维生素C含量(mg/100 g)。
碘量法:将果蔬洗净,用纱布拭干其外部所附着的水分,若样品清洁可以不必洗。样品可以先纵切为4~8等份,分别称取20g可是用食部分,置于研钵中加入2% Hcl 15~10ml,研磨至浆状,移于 100ml 容量瓶中,用2% HCl 加至刻度线处,混匀,过滤,记录滤液总体积。样品液的测定: 在50ml 烧杯中,用移液管注入10% KI 溶液0.5ml,0.5% 的淀粉溶液 2ml,样品液 5ml,蒸馏水 2.5ml,用0.001N KIO3 液滴定,要一滴滴加入,并时时摇动烧杯,至微蓝色不褪色为终点( 一分钟不褪为止) 。记录所用 KIO3 液毫升数,计算维生素C含量。
1.3测定方法评价
2,6-二氯酚靛酚滴定法具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰,如果样品中含有色素类物质,将给滴定终点的观察造成困难。碘酸钾滴定法较便宜,使用碘酸钾滴定法测定蔬菜中维生素C含量较为简便易行,而2,6一二氯靛酚法相对复杂。总的来说,滴定法操作简便、快速,无须特殊仪器,但在测定深色样品时,准确度和精确度欠佳。
2.荧光法测定维生素C
2.1测定原理
Deutsch和Weeks曾经报道过一种检测维生素C的荧光分析法(OPDA),并被指定为维生素C的经典荧光分析法。在该方法中,维生素C先被活性炭(Norit)氧化为脱氢抗坏血酸(DHAA),DHAA再与荧光底物邻苯二胺(OPDA)结合生成荧光产物,通过对该荧光产物的检测实现对维生素C的定量分析。孙振艳等[1]提出了一种新的测定维生素C的荧光分析方法。基于维生素C被Cu2+氧化为DHAA,DHAA进一步与苯甲酸及十六烷基三甲基溴化铵产生荧光协同增敏作用,通过对体系荧光强度的测定进行维生素C的定量分析。
2.2测定操作
荧光分析法(OPDA)的测定方法:称取一定量样品,研磨后用水浸泡,取清液加入适量1%草酸溶液,振摇约3min,加入0.2g已处理好的活性炭再充分振摇约3min后过滤,滤液加于两个25mL比色管再加入5.0mL缓冲溶液,,其中一管加入2.0mL硼酸溶液(即空白)摇匀,放置15min后,两管均加入邻苯二胺溶液10mL,避光放置30min待测。样品荧光强度减去空白荧光强度值即为样品相对荧光强度值。
孙振艳等的荧光分析法:在25 mL比色管中依次加入0. 6 mL CuSO4溶液,2. 0 mL十六烷基三甲基溴化铵溶液,2. 0 mL苯甲酸溶液,一定体积的维生素C标准溶液,,5. 0 mLNaOH-邻苯二甲酸氢钾缓冲溶液,用蒸馏水定容,摇匀。在35℃恒温水浴中加热30 min,将溶液流水冷却至室温,激发波长为308 nm,在发射波长408nm处,测量荧光强度F,以不含维生素C的试剂空白为F0,计算ΔF=F-F。
2.3测定方法评价
荧光分析法测定维生素C具有操作简单,精密度高,检出限低等优点,该法可以应用于水果、蔬菜和药物中维生素C的检测,适于推广。
3.光度分析法测定维生素C
3. 1测定原理
2,4-二硝基苯肼法和钼蓝比色法是常见测定维生素C的一种光度分析法。2,4-二硝基苯肼法的原理是总维生素C包括还原型、脱氢型和二酮古乐糖酸,样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定。钼蓝比色法是测定果蔬中还原型维生素C含量的一种常用方法,因偏磷酸和钼酸铵反应生成的磷钼酸铵经还原型的维生素C还原后生成亮蓝色的络合物,通过分光比色可以测定样品中还原型维生素C的含量。
3.2测定操作
2,4-二硝基苯肼法:取适量的样品可食部,加入100 mL 2%草酸溶液,制成匀浆。取匀浆20 g (含1~2 mg抗坏血酸)置入100 mL容量瓶中,用1%草酸溶液定容,混匀后过滤。取25 mL过滤液放入有2 g活性炭的25 mL比色管中,振摇1 min,过滤。然后取10 mL此氧化提取液,加入10 mL 2%硫脲溶液,混匀。按照GB12392-90中呈色反应方法,用分光光度计进行比色,根据结果计算出样品中抗坏血酸含量。按下式计算样品中Vc的含量:X=c·Vm×F×1001000。
X—样品中总抗坏血酸含量,mg/100g;
c—由标准曲线查得或回归方程算得“样品氧化液”总抗坏血酸的浓度,μg/mL; V—试样用1%草酸溶液定容的体积,mL; F—样品氧化处理过程中稀释倍数; m—试样质量,g。
钼蓝比色法:准确称取 100 g 样品, 加入草酸-EDTA 溶液, 经捣碎后移入 100 mL 容量瓶,定容,过滤,吸取 2 mL 上清液于 50 mL 容量瓶中,加入 1 mL 的偏磷酸-醋酸溶液,5%的硫酸 2.0 mL,摇匀,加入 4 mL 钼酸铵,以去离子水定容至 50 mL,20 min 后测定吸光度。
3.3测定方法评价
钼蓝比色法测定果蔬中还原型维生素C含量数据稳定性、准确性较好,是一种快速、准确、灵敏度高的测定方法,而且不受样液颜色的影响。2,4-二硝基苯肼比色法测定总VitC (还原型和氧化型),特异性较好,但操作复杂,是我国食品中VitC测定的标准方法,此方法适用于蔬菜、水果及其制品中总抗坏血酸的测定。
4.高效液相色谱法
4.1测定原理
高效液相色谱法是近年来发展起来的一种测定维生素 C 含量的方法,测定维生素 C 含量通常采用 C18柱或 C8柱,由于维生素 C 对紫外光有吸收,故检测器常用紫外检测器。
4.2测定操作
称取维生素C标准样品0.1000 g.转移至100 ml容量瓶中,用双蒸水定容,得到1.0mg·ml-1的维生素C标准溶液。参考Nisperos-Carriedo等的方法。准确称取果肉1.00 g,用5 ml 0.2%偏磷酸冰浴研磨, 10000 g离心15 min,残渣加入4 ml 0.2%偏磷酸再提取,合并上清液,定容至10 ml,经0.45μm滤膜过滤后待测。每个样品重复5次。维生素C在240 nm波长时有最大吸收峰,故以240 nm作为检测波长。以0.2%偏磷酸为流动相。分别吸取标准溶液1 ml、2 ml、4 ml、6 ml、8m,l各自定容至10 m,l从中分别吸取10.0μl进样分析,以峰面积(mv)为纵坐标,标样浓度(mg·ml-1)为横坐标,绘制标准溶液曲线,计算线性回归方程的回归系数和截距。将样品溶液分别进样10.0μl进行液相色谱分析,测定维生素C的色谱峰面积,代入标准曲线计算出维生素C含量。
4.3测定方法评价
高效液相色谱法具有高效、快速、稳定、结构准确、操作简便等特点。该法分离时间短,对结构不稳定的维生素C尤为适合,还特别适用于颜色较深的提取液样品的测定,成为近年来较受欢迎的维生素C测定方法。缺点是所用仪器较为昂贵。

‘贰’ 硼酸阻燃原理

什么是硼系阻燃剂?无机硼系阻燃剂以硼酸、硼砂和硼酸盐为主,该系阻燃剂可明显提高材料的耐火、阻燃和抑烟性能,使其燃烧时较少散发出有毒、有害气体。无机硼系阻燃剂(硼酸、硼砂等)由于具有原料来源广泛、抑烟性、稳定性好等优点成为重要的阻燃剂之一。硼砂主要为四硼酸钠(Na2B4O7·10H2O),是制取含硼化合物的基本原料,几乎所有的含硼化物都可经硼砂来制得。它们在冶金、钢铁、机械、军工、刀具、造纸、电子管、化工及纺织等部门中都有着重要而广泛的用途。无机硼酸盐系列阻燃剂有偏硼酸钡、氟硼酸铵、偏硼酸、钠、五硼酸铵、偏硼酸铵、硼酸锌等,硼酸锌是目前应用最广泛的无机硼系阻燃剂之一,硼酸锌由硼砂或硼酸合成而得,同时具有阻燃、抑烟、成炭、抑制阴燃和防止熔滴等多种功能,广泛用于纤维织物、聚酰胺、尼龙、聚氯乙烯中作阻燃剂。硼酸锌可单独作阻燃剂,也常与溴系阻燃剂、氢氧化铝、氢氧化镁以及膨胀阻燃剂协同阻燃,代替有毒的三氧化二锑。除了无机硼系阻燃剂外,近年来有机硼系阻燃剂正在逐渐引起人们的注意。研究利用硼酸与含氮、含磷、含卤、含硅元素物质得到硼-氮、硼-磷、硼-卤与硼-硅分子内复合型有机硼系阻燃剂,具有良好的阻燃抑烟性能。硼系阻燃剂检测方法哪些?目前测定硼砂、硼酸无机硼化合物的方法主要有分光光度法、电感耦合等离子发射光谱法(ICP-OES)、电感耦合等离子体质谱法(ICP-MS)等。1分光光度法GB/T 21918—2008采用分光光度法和电感耦合等离子体发射光谱法来测定食品中的硼酸盐。分光光度法是基于物质对光的选择性吸收的一种常用定性定量分析方法,主要有姜黄素法、亚甲胺-H法等。姜黄素分光光度法利用姜黄素与硼酸反应生成红色产物,通过比色可以测定样品中硼酸含量。 亚甲胺-H法是利用甲亚胺-H酸与硼在酸性条件下形成黄色配合物,显色与硼的浓度成正比进行测定。目前我国食品中硼酸的测定大多是采用该法。2 离子色谱法(IC)离子色谱法(IC)采用专属性色谱柱分离共存组分,试验干扰小,选择性高,可同时测定多种离子化合物,可以实现快速检出。但硼砂在酸性条件下转化成硼酸根(BO33-),BO33-为弱酸,电离常数小且易受淋洗液pH值的影响,所以BO33-经过离子抑制器后电导信号很低,需加入合适的络合剂增强信号。3高效液相色谱法(HPLC)高效液相分析在液相色谱的基础上采用了高压输液泵、高效固定相、高灵敏度的检测器和强大的数据处理系统。高效液相色谱法检测分离效率高,选择性好,应用范围较广,广泛应用到化工、生物、食品、医学等领域。周示玉等人用姜黄素的乙酸溶液对香精香料样品中的硼酸进行衍生化,用高效液相色谱法分析。以甲醇与四丁基溴化铵(TBABr)溶液/80:20为流动相,根据硼砂在硫酸环境下定量转化成硼酸的原理间接测定硼砂。检出限为0.0004mg/L。硼 酸 和 硼 砂 的 平 均 回 收 率 分 别 为92.1%~106.6%和92.9%~107.1%。硼砂在酸性条件下易转变为硼酸,易溶于水、甲醇、乙醇等。隋迎军等建立了高效液相色谱法测定冰硼散中硼砂的含量,流动相:甲醇-水/80:20,检测波长550nm。陈艳等人用酸性甲醇提取食品中的硼砂,以姜黄冰醋酸衍生,甲醇-水/80:20为流动相,检出限为6.4ng/kg。4 电感耦合等离子体原子发射光谱法(ICP-AES)ICP-AES法是以ICP等离子炬作为激发光源,使样品中各成分的原子被激发并发射出特征谱线,通过特征谱线的波长和强度来确定样品中所含的化学元素及其含量的分析技术。具有线性范围宽(可达5~6个数量级)、光谱干扰小、分析速度快、多元素同时测定等特点,能测定各种样品中的常量、微量乃至痕量的无机元素。连晓文等人用电感耦合等离子体光谱仪对食品中的硼砂硼酸进行了测定。样品经过双氧水微波消解后经ICP-AES分析测定,结果表示ICP-AES能准确测定食品中硼的含量,检出限在9.7μg/L~24μg/L,回收率达到98%~108%。汪静玲等人用磷酸做稳定剂,对腐竹中的硼进行湿法消化提取,并用ICP-AES测定其含量。回收率94.5%~96.4%,方法精密度0.93%。林立等人采用微波消解法对食品样品进行了前处理,采用ICP-AES法进行了总硼的含量分析测定,此方法硼元素的检出限为0.1mg/kg,RSD为1.6%~6.8%,回收率为96.5%~104.0%。5 电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法(ICP-MS)是一种元素和同位素分析技术,结合了电感耦合等离子体离子源的高温电离特性和四级杆质谱仪快速灵敏的优势,具有灵敏度高、检出限低、线性范围宽等优点,是检测痕量元素的极佳方法,广泛应用于食品分析、地质勘探、环境分析等领域。林光西等人建立了用电感耦合等离子体质谱法测定了土壤中的有效硼,检出限为0.01μg/g。RSD为1.03%方法便捷有效。陈秋生等人研究了ICP-MS法测定土壤中的硼。以沸水提取,采取多孔消解炉加热,用ICP-MS法进行上机分析。方法的检出限为2.5μg/g, 相对标准偏差为 2.53%,平均回收率为98.2%。适用于各类土壤中硼的测定,且能满足大批量样品检测。

‘叁’ 合成的化合物怎么用液相证明纯度高低

仅通过液相色谱的方法证明样品纯度是高还是低的
可以采用外标或内标的方法来进行测定。
当然前提是必须有已知准确含量的标准品,并且样品适合液相色谱检测。
如果没有标准品,那仅通过液相色谱来确定含量是不太可靠的,因为液相色谱的检测时,很多检测器都不能完全使得所有物质都响应并且响应值都是完全相同的。
基于这一点,我们有时在自己制 标准品时,一般通过DAD进行扫描,确保一个合适的波长,当然还有合适的其它条件,进行液相色谱测定。
然后再进行残渣,水分等检测,必要时还要做红外和核磁。
这样,通过多种办法来测定,最终才能确定产品纯度是高的或是低的,以及相对比较准确的结果。

‘肆’ 高效液相色谱分析法的类型

在吸附色谱中,样品的极性官能团牢固地保留在填料的吸附活性中心上,非极性烃基几乎不予保留。所以,要清楚地辨别极性功能团的种类、数量和位置。通常,样品能用吸附色谱分离的应是能溶解于有机溶剂并是非离子型的,强离子样品是不适宜的。
吸附色谱所使用的流动相以正己烷、三氯甲烷、二氯甲烷作为基础,按照样品的极性加上乙醇,然而,最好是使所加入醇的浓度为10%或更少一些。如有可能,可进一步减小百分数。因为高浓度的醇会减少填料的吸附活性,减弱吸附能力,并使重现困难。 1.正相分配色谱
正相分配色谱适用于不溶于水而溶于有机溶剂且带有极性基团的样品,但正相分配色谱不适合于离子型物质。
2.反相分配色谱
这种方法应用非常广泛,应用的范围也很广,在反相分配色谱中,样品的非极性部分起保留作用。
通过使用的流动相是水—甲醇和水—乙腈,通过加入甲醇或乙腈的量的不同来调节分离,但如果样品带有离子型基团,需要在流动相中加入盐或调节流动相的PH值,例如,如果样品有一个—COOH 基团,使流动相的PH值是偏向酸性的,由于抑制了—COOH基团的电离而加强了保留。这个方法叫离子抑止法,如果样品有强离子基,有时候采用在流动相中加入适当抗衡离子以形成离子对的离子对法。
在调节PH值中,保持PH值在填料说明书手册中所规定的范围内,大多数化学键式的二氧化硅使用在PH=2-9,然而,当加入盐以后,最好使其PH=7.5-8或更小的,多孔聚合物填料能应用非常广泛的PH值。 这个方法是用填料的固定相的离子交换基团和样品的离子基团之间的离子交换来分离样品组分的,按照所交换的离子分成阳离子交换和阴离子交换。
离子交换色谱使用于能溶于水的离子型物质。在离子交换色谱中,流动相的盐的浓度、PH及盐的种类等都对保留值有很大的影响。在高效液相色谱的离子交换中所用的盐有磷酸盐、醋酸盐和硼酸盐。因为氯化物会腐蚀不锈钢仪器,在高效液相色谱中不能使用NaCl或其他的氯化物盐类。根据测量波长有些盐也不能使用,例如,醋酸吸收大约在210nm,当检测处在短波端的时候,用醋酸作流动相是不合适的。 凝胶色谱不同于以上三种分离方法。凝胶色谱是根据分子大小用分子筛效应来分离样品组分的。这个方法也叫排阻色谱或粒度排阻色谱。具有一定孔径的多孔性合成聚合物经常用作填料。
因为在样品中,小尺寸的分子深深地渗透到微孔中,所以迟流出,而大尺寸的分子没有渗透到微孔中,就很快流出。通常合成树脂的分离使用有机溶剂作流动相,叫做凝胶渗透色谱。
凝胶色谱依样品的性质又可分为凝胶渗透和凝胶过滤。
1.凝胶渗透色谱
凝胶渗透色谱(GelPermeationChromatography),简称GPC。此一类的色谱,使用于有机性溶媒的样品中,如PVC,PS,ABS等等,而所用的洗脱液有THF,Chloroform等等。
2.凝胶过滤色谱
凝胶过滤色谱(GelFiltrarionChromatography),简称GFC。此一种类的层析法,使用于水溶媒的试剂中,如蛋白质、淀粉及水性合成高分子等等,而所用的溶液有水、缓冲液等等。
凝胶的种类很多,按其原料来源可分为有机胶和无机胶。按其制备的方法又可分为均匀、半均匀和非均匀三种凝胶。而根据凝胶的强度又可分为软胶、半硬胶和硬胶三大类。根据它对溶剂的适用范围又可分为亲水性、亲油性和两性凝胶等等。

‘伍’ 高效液相色谱仪原理及操作步骤

1. 高效液相色谱仪原理
高效液相色谱仪原理 高效液相色谱仪的使用和原理分析
高效液相色谱法(HPLC)是目前应用广泛的分离、分析、纯化有机化合物(包括能通过化学反应转变为有机化合物的无机物)的有效方法之一。

在已知的有机化合物中,约有80%能用高效液相色谱法分离、分析,而且由于此法条件温和,不破坏样品,因此特别适合高沸点、难气化挥发、热稳定性差的有机化合物和生命物质。HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。

其中输液泵、色谱柱、检测器是关键部位。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、与柱或保护住、柱温控制器等,现代HPLC仪还有微机控制系统,进行自动化仪器控制和数据处理。

制备型HPLC仪还备有自动馏分收集装置。目前常见的HPLC仪生产厂家国外有Waters 公司、Agilent 公司(原HP公司)、岛津公司等,国内有上海伍丰科学仪器有限公司,上海禾工科学仪器有限公司,大连依利特公司、北京创新通恒、北京温分等。

一、输液泵1.泵的构造和性能输液泵是HPLC系统中最重要的部件之一。泵的性能好坏直接影响到整个质量和分析结果的可靠性。

输液泵应具备如下性能:①流量稳定,其RSD应小于0.5%,这关系到定性定量的准确性;②流量范围宽,分析型应在0.1~10ml/min范围内连续调,制备型应能达到100ml/min;③输出压力高,一般应能达到150~300KG/CM2:④液缸容积小;⑤密封性能好,耐腐蚀。泵的种类很多,按输液性质可分为恒压泵和恒流泵。

恒流泵按结构又可分为螺旋注射泵、柱塞往复泵和隔往复泵。恒压泵受柱阴影响,流量不稳定;螺旋泵缸体太大,这两种泵己被淘汰目前应用最多的是柱塞往复泵。

柱塞往复泵的液缸容积小,可至0.1ml,因此易于清洗和更换流动相,特别适合于再循环和梯度洗脱;改变电机转速能方便地调节流量,流量不受柱压影响;泵压可达400KG/CM2。ADW主要缺点是输出的脉冲性较大,现多彩采用双泵系统来克服。

双泵按连接方式可分为并联式和串联式,一般说来并联泵的流量重现性较好(RSD为0.1%左右,串联泵为0.2~0.3%),但出现故障的机会较多(因多了单向阀),价格也较贵。二、进样器一般HPLC分析常用六通进样阀(以美国RHEODYNE公司的7725和7725I型最常见),其关键部件由圆形密封垫子(转子)和固定底座(定子)组成。

耐高压(35~40MPA),进样量准确,重复性好(0.5%),操作方便。六通阀进样方式有部分装液法和完全装液法两种。

①用部分装液法进样时,进样量应不大于定量环体积的50%(最多75%),并要求每次进样体积准确、相同。此法进样的准确度和重复性决定于注器取样的熟练程度,而且易产生由进样引起的峰展宽。

②用完全装液法进样时,进样量应不小于定量环体积的5~10倍9最少3倍,这样才能完全置换定量环内和流动相,消除管壁效应,确保进样的准确度及重复性。三、色谱柱色谱是一种分离分析手段,分离是核心,因此担负分离作用的色谱柱是色谱系统的心脏。

对色谱柱的要求是柱效高、选择性好,分析速度快等。市售的用于HPLC的各种微粒填料好多孔硅胶以及以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)、多孔碳等,其粒度一般为3,5,7,10UM等,柱效理论值可达5~16万/米。

对于一般的分析只需5000塔板数的柱效;对于同系物分析,只要500即可;对于较难的分离物质对则可采用高达2万的柱子,因此一般10~30CM左右的柱长就能满足复杂混合物分析的需要。柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,不要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。

即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍料径的厚度。

在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。四、检测器HPLC的检测器分为两类:通用型检测器和专用型检测器。

1.通用型检测器可连续测量色谱柱的流出物的全部特性变化,通常采用差分测量法,这类检测器包括示差折光检测器、介电常数检测器、电导检测器等,通用检测器适用范围广,但由于对流动相有响应,因此易受温度变化、流动相和组分的变化的影响,噪声和漂移都比较大,灵敏度较低,不能用梯度洗脱。2.专用型检测器用以测量被分离样品组分某种特性的变化。

这类检测器对样品中组分的某种物理或化学性质敏感,而这一性质是流动相所不具备的,或至少在操作条件下不显示。这类检测器包括紫外检测器、荧光检测器、放射性检测器等。
高效液相色谱仪的工作原理?
高效液相色谱仪工作原理;高压泵将贮液罐的流动相经进样器送入色谱柱中,然后从检测器的出口流出,这时整个系统就被流动相充满。当欲分离样品从进样器进入时,流经进样器的流动相将其带入色谱柱中进行分离,分离后不同组分依先后顺序进入检测器,记录仪将进入检测器的信号记录下来,得到液相色谱图。

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送,色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万),同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

(5)硼酸液相色谱的检测方法扩展阅读

高效液相色谱仪配置高压二元泵或者低压四元泵,而泵的冲程体积以及混合器的体积大小,均会对色谱基线噪音水平产生影响,特别是在梯度洗脱的时候。一般地泵的冲程体积越小以及混合器的体积相对越大,由输液造成的脉冲相对越小,对于梯度变化的响应能力越高,基线越平缓,

在应用二元泵的时,需要注意的是,当二元混合中的其中一元流动相的比例小于5%的时候,特别是在使用正相等度洗脱对一些医药中间体及终产品进行手性拆分的时候,最好使用单泵预混合的方式。避免由于泵在低比例时泵液精度相对较差,而导致色谱基线出现冲程相关峰,

参考资料来源;搜狗网络--高效液相色谱仪
高效液相色谱仪的基本工作原理
高效液相色谱仪的基本工作原理

高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。
HPLC原理是什么
原理: 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别。

被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据就可以以图谱形式打印出来,以便研究人员分析。 (5)硼酸液相色谱的检测方法扩展阅读: 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。

①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。 ②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。

③高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。

④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。 ⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

⑥柱子可反复使用:用一根柱子可分离不同化合物 ⑦样品量少、容易回收:样品经过色谱柱后不被破坏,可以收集单一组分或做制备。 此外高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。

高效液相色谱的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显着地导致色谱峰的加宽,柱效率降低。

高效液相色谱检测器的灵敏度不及气相色谱。 HPLC使用的色谱柱是很细的(1~6 mm),所用固定相的粒度也非常小(几μm到几十μm),所以流动相在柱中流动受到的阻力很大,在常压下,流动相流速十分缓慢,柱效低且费时。

为了达到快速、高效分离,必须给流动相施加很大的压力,以加快其在柱中的流动速度。为此,须用高压泵进行高压输液。

高压、高速是高效液相色谱的特点之一。HPLC使用的高压泵应满足下列条件: a. 流量恒定,无脉动,并有较大的调节范围(一般为1~10 mL/min); b. 能抗溶剂腐蚀; c. 有较高的输液压力;对一般分离,60*10^5Pa的压力就满足了,对高效分离,要求达到150~300*10^5Pa。

⑴往复式柱塞泵 当柱塞推入缸体时,泵头出口(上部)的单向阀打开,同时,流动相进入的单向阀(下部)关闭,这时就输出少量的流体。 反之,当柱塞向外拉时,流动相入口的单向阀打开,出口的单向阀同时关闭,一定量的流动相就由其储液器吸入缸体中。

这种泵的特点是不受整个色谱体系中其余部分阻力稍有变化的影响,连续供给恒定体积的流动相。 ⑵气动放大泵 其工作原理是:压力为 p1 的低压气体推动大面积( SA )活塞A ,则在小面积( SB )活塞 B 输出压力增大至 p2 的液体。

压力增大的倍数取决于 A 和 B 两活塞的面积比,如果 A 与 B 的面积之比为 50 : 1 ,则压力为 5 * Pa 的气体就可得到压力为 250*Pa 的输出液体。这是一种恒压泵。

参考资料:网络——高效液相色谱。
HPLC仪的工作原理是什么?
高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350*105Pa。

2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。

3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。

如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。

5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。

对于高沸点、热稳定性差、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。

高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。

其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。

流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。

达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。

a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。

现在应用很广泛(70~80%)。 2 .液 — 固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。

这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。

当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。

] 3 .离子交换色谱法(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。

以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中) 当交换达平衡时: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系数为: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。 4 .离子对色谱法(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。

其原理可用下式表示: X+水相 + Y-水相 === X+Y-有机相 式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X+Y---形成的。
液相色谱仪使用及工作原理
工作原理: 流动相通过输液泵流经进样阀,与样品溶液混合,流经色谱柱,在色谱柱中进行吸附、分离,最后每一组分分别经过检测器转变为电讯号,在色谱工作站上出现相应的样品峰。

液相色谱的使用: 首先对样品进行预处理,然后进样,进样完毕后,清洗进样口,每次分析结束后,清洗通道,最后关闭仪器。 (5)硼酸液相色谱的检测方法扩展阅读: 液相色谱所用基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。

液相色谱所用基本理论:塔板理论与速率方程也与气相色谱基本一致,但由于在气相色谱中以液体代替气相色谱中气体作为流动相,而液体和气体的性质不相同。 此外,液相色谱所用的仪器设备和操作条件也与气相色谱不同,所以,液相色谱与气相色谱有一定的差别。

主要有以下几力‘面: ①操作条件及应用范围不同 对于气相色谱,是加温操作。仅能分析在操作温度下能汽化而不分解的物质,对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难,致使其应用受到一定程度的限制,据统计只有大约20%的机物能用气相色谱分析。

而液相色谱是常温操作,不受样品挥发度和热稳定性的限制,它非常适合相对分子量较大,难汽化,不易挥发或对热敏感的物质、离子型化合物和高聚物的分离分析,大约占有机物的70%~80%。 ②液相色谱能完成难度较高的分离工作 a.气相色谱的流动相载气是色谱惰性的,基本不参与分配平衡过程,与样品分子无亲和作用,样品分子主要与固定相相互作用。

而在液相色谱中流动相液体也与固定相争夺样品分子,为提高选择性增加了一个因素。也可选择不同比例的两种或两种以上的液体做流动相,增加分离的选择性。

b.液相色谱固定相类型多,如离子交换色谱和排阻色谱等,作为分析时,选择余地大;而气相色谱并不可能。 c.液相色谱通常在室温下操作,较低的温度,一般有利于色谱分离条件的选择。

③由于液体的扩散性比气体的小105倍,因此,溶质在液相中的传质速率慢,柱外效应就显得特别重要;而在气相色谱中,由色谱柱外区域引起的扩张可以忽略不计。 ④液相色谱中,制备样品简单,回收样品也比较容易,而且回收是定量的,适合于大量制备,但液相色谱尚缺乏通用的检测器,一起比较复杂,价格昂贵。

在实际应用中,这两种技术是相互补充的。 综上所述,液相色谱具有柱效高,选择性高,灵敏性高,分析速度快,重复性好,应用范围广等优点,该法已成为现代分析技术的主要手段之一。

目前在化学,化工,医药,生化,环保,农业等科学领域获得广泛的应用。 高效液相色谱应用非常广泛,几乎遍及定量定性分析的各个领域。

(1)分离混合物 高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。 通过与试样预处理技术相配合,高效液相色谱法所达到的高分辨率和高灵敏度,可分离并同时测定性质上十分相近的物质,能够分离复杂混合物中的微量成分。

并且随着固定相的发展,还可在充分保持生化物质活性的条件下完成对其的分离。 (2)生化分析 由于高效液相色谱法具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域,并已成为解决生化分析问题最有前途的方法。

(3)仪器联用 高效液相色谱仪与结构仪器的联用是一个重要的发展方向。高效液相色谱一质谱联用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等:高效液相色谱一红外光谱联用也发展很快,如在环境污染分析测定水中的烃类等.使环境污染分析得到新的发展 参考资料:网络——液相色谱。
液相色谱仪的原理是什么?用来干什么?
液相色谱仪的原理: 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。

主要用于对高沸点、难气化合物的混合物通过色谱柱核淋洗剂并以实现分离。应用于生物化学、生物医学、环境化学、石油化工等部门。

(5)硼酸液相色谱的检测方法扩展阅读液相色谱仪根据固定相是液体或是固体,又分为液-液色谱(LLC)及液-固色谱(LSC)。现代液相色谱仪由高压输液泵、进样系统、温度控制系统、色谱柱、检测器、信号记录系统等部分组成。

与经典液相柱色谱装置比较,具有高效、快速、灵敏等特点。 高效液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统。

进样系统一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。

输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4X10Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。

分离系统该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成)。

‘陆’ 液相色谱,对被检测物有什么要求么,使用液相色谱应该做些什么准备

  1. 对被测物只要求样品能制成稳定的溶液。液相色谱不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。

  2. 使用前应对被测物的组成、性质(光谱信息、溶解性、化学结构)有一定的了解,针对以上信息来决定使用何种固定相、流动相、检测器以及样品配制方法。还可查阅一下类似物质的分析方法,结合实际工作情况,来确定适用的分析方法。

大概就这么多吧,这些说起来很简单,实际上是做起来是很复杂的工作。

阅读全文

与硼酸液相色谱的检测方法相关的资料

热点内容
假樱桃的种植方法 浏览:443
自己家存酒的正确方法 浏览:688
冬钓大鲫鱼调漂最佳方法 浏览:150
cpu的制作方法视频 浏览:648
夹鼻器使用方法 浏览:225
不可恢复式感温电缆的连接方法 浏览:323
儿童简单的画冰淇淋方法 浏览:514
哪里普及急救知识方法 浏览:749
海杆渔轮的使用方法 浏览:675
求对称轴的方法有哪些 浏览:809
腿弯疼痛检查最佳的方法是什么 浏览:696
紫苏的食用方法 浏览:964
新冠病毒核酸检测用什么方法 浏览:752
用热水洗衣服的正确方法技巧 浏览:852
监控头连接方法 浏览:578
冬瓜如何腌制的方法 浏览:787
分线路由器安装方法 浏览:950
行李箱缝制方法视频 浏览:935
托福阅读成绩计算方法 浏览:50
养碳炉的使用方法 浏览:411