1. 有机、无机化肥料中的水分含量怎么测定
化肥的水分含量直接影响着化肥的等级。对于某些水分含量超标的化肥,还有可能引起其吸湿或遇到潮湿条件,放置过长,会引起多种化学反应,从而影响化肥的肥效。德国默斯在线水分仪,不论是在化肥生产,仓储,运输中,都能对各种化肥,包括有机肥、无机肥的水分进行快速准确的测量,是化肥行业必不可缺少的水分检测仪器。
1、化肥料的概念及分类
肥料主要是指直接或间接供给作物生长所需要的养分,改良土壤性状,以提高作物的产量和品质的物质。一般分为:有机肥(农家肥);化肥(无机肥);生物肥料;绿肥。
2、化肥料水分含量的重要性
对于很多肥料来说,水分含量不仅在生产加工过程中,直接影响肥料的品质。在仓储保存过程中,可能也会对其质量产生影响,例如:过磷酸钙,这种肥料吸湿或遇到潮湿条件、放置时间过长,多会引起多种化学反应,主要指其中的硫酸铁、铝杂质与水溶性的磷酸一钙发生反应生成难溶性的磷酸铁、铝盐,从而降低了磷肥肥效的现象。
主要反应如下:
Fe2(SO4)3+3Ca(H2PO4)2.2H2O+4H2O→→6FePO4.2H2O↓+ 3CaSO4.2H2O
Al2(SO4)3+3Ca(H2PO4)2.2H2O+4H2O→→6AlPO4.2H2O↓+ 3CaSO4.2H2O
因此,过磷酸钙含水量不宜超标,并且在贮存和运输过程中特别注意防潮,贮存时间也不宜过长。
3、化肥料水分含量在线测定的方法
德国默斯MS-300在线微波水分检测仪,可以很好在各种氮肥、磷肥、钾肥、微肥、复合肥料的生产加工,仓储运输的过程中对其水分含量进行快速准确的测量,从而能够做到提高化肥的出厂等级,在保存过程中延长其保存周期,避免肥效降低等破坏因素。
*德国先进的微波技术,极高的稳定性和可靠性。
*水分测量范围宽至0-100%,可以自行调整。
*测量精度最高至0.1%。
*德国工艺精良之作,不锈钢外壳坚固耐用,最高可10年使用寿命。
*可以实现现场校准和软件校准,而且一次校准成功后,无需经常校准。
*多年现场应用经验数据建立起来的数学模型支持,保证水分测量无忧。
*超高的性价比,符合中国国情的价格。
*安装简易:可安装在管道内、罐内、斗内、下料口、桶内等各种位置。
2. 水分测定有哪几种主要方法各有什么特点
经典水分分析方法已逐渐被各种水分分析方法所代替,目前市场上主要存在的水分测定仪
主要有卤素水分仪、红外水分仪、露点水分仪、微波水分仪、库仑水分仪、卡尔•费休水分测定仪,以及一些专用水分仪。这些仪器测定方法操作简便、灵敏度高、再现性好,并能连续测定,自动显示数据。
1、红外水分测定仪操作简单,耗时少,测量结果准确,故红外水分仪可广泛应用于化工、医药、食品、烟草、粮食等行业的实验分析和日常进货控制及过程检测。
2、卡尔•费休法属经典方法,又称为 微量水分测定仪,其主要应用于水分值含量较低的样品检测,经过近年来改进,大大提高了准确度,扩大了测量范围, 已被列为许多物质中水分测定的标准方法。
3、露点水分测定仪操作简便,仪器不复杂,所测结果一般令人满意,常用于永久性气体中微量水分的测定。但此法干扰较多,一些易冷换气体特别在浓度较高时会比水蒸气先结露产生干扰。
4、微波水分测定仪利用微波场干燥样品,加速了干燥过程,具有测量时间短,操作方便,准确度高、适用范围广等特点,适用于粮食、造纸、木材、纺织品和化工产品等的颗粒状、粉末状及粘稠性固体试样中的水分测定,还可应用于石油、煤油及其他液体试样中的水分测定
5、库仑水分测定仪常用来测定气体中所含水分。此法操作简便,应答迅速,特别适用于测定气体中的痕量水分。如果用一般的化学方法测定,则是非常因难的事情。但电解法不宜用于碱性物质或共轭双烯烃的测定。
3. 水份快速测定
你想问的是“水份快速测定有哪些方法?”吧。水份快速测定方法如下:
1、干燥法:主要应用于固体样品水分的测定,通过加热使样品失去水分。此法常用于测定大部分固体样品(大块样品需粉碎),操作较简单。
但需要符合以下条件:①水分是*挥发性物质;②不含有结合水;③样品中其它成分由于受热而引起的化学变化可以忽略不计;缺点是精度较低,且不适用于测液体、气体、和含挥发物质样品。
2、蒸馏法:把不溶于水的有机溶剂和样品放入蒸馏式水分测定装置中加热,使样品中的水分分离出来,由馏出的水量,即可计算出水分含量。
这种方法的设备简单,价格低廉,但有以下几种缺点:①水与有机溶剂易发生乳化现象;②样品中水分可能完全没有挥发出来;③水分有时附在冷凝管壁上,造成读数误差;④除水分外,还有大量挥发性物质。所以精度较低、误差较大,且测定时间很长,适用于对水分含量度要求不高且测定频率很小的样品。
3、露点法:露点法操作简便,仪器不复杂,所测结果一般令人满意,常用于长久性气体中微量水分的测定。但此法干扰较多,一些易冷换气体特别在浓度较高时会比水蒸气先结露产生干扰。
4、卡尔费休法:是1935年卡尔·费休(KarlFischer)提出的测定水分的方法,可应用于大部分无机化合物和有机化合物中含水量的测定。卡尔费休法水分测定仪经过多年改进,又分为卡尔费休滴定法与卡尔费休库仑法两种,其中卡尔费休滴定法水分测定仪主要用于测定含水量较高的样品,而对于含水量较低样品检测效果不理想,而且操作相对复杂。
而卡尔费休库仑法水分测定仪,对于任何含水量的样品都适用,尤其擅于测定低含水样品,因其具有操作简单、测量准确、性能稳定等优点,可快速测定液体、固体、气体中的水分含量。
4. 用微量水分测定仪怎么测量液体
微量水分测定仪主要是应用于水份值含量较低的样品检测,通过技术的提高以及对产品的改善,在产品的功能上大大的提高了其准确度,扩大了测量的范围。说到这,大家对于它的操作程序了解多少呢?接下来小编为大家介绍下。
1、滴定液的加入
将进液管、分子筛干燥管及专用瓶盖装在试剂瓶上,以连通设备。按键盘上“清洗”键,输入次数和体积数,按“启动”键开始清洗滴定管,使试剂充满整个进出液管。建议每天开始实验前反复循环清洗滴定管,使得试剂瓶中和滴定管路中浓度保持一致。(一般设定3次10ml,可适当减少次数和体积。)
2、溶剂的加入(无水甲醇)
将溶剂管、分子筛干燥管及专用瓶盖装在无水甲醇试剂瓶上,通过自动给排液器在滴定池中加入20~50ml的无水甲醇,至少要保证浸没电极和出液管。加入的甲醇的量取决于滴定池的大小,也取决于被测样品量的大小。加入甲醇后,滴定池要立即关紧,目的是把无法避免的进入滴定池的大气中的水分保持至最少量。同时,请开启搅拌。
3、预滴定
按“方法”键,选择“方法1-水分预滴定”,确认后按微量水分测定仪的“启动”键,开始预滴定程序。测定结束,按“确认”键返回到系统保持状态,以便进行其他程序。
使用试剂将加进滴定池中的溶剂滴定至干燥状态。此过程是非常重要的,因为预滴定不仅可以消除溶剂中的水分,而且还能去除滴定池里面、壁上以及电极上所吸附的水分,同时滴定池中的气体液得到了干燥。滴定至一个稳定的终点是可靠分析的先决条件,所以进行预滴定时要尽可能多地消耗一定时间。一个几乎完全干燥的滴定池漂移值一般在10ml/min左右。
4、漂移
按“方法”键,选择“方法2-水分漂移”,确认后按“启动”键,开始漂移程序。测定结束,按“确认”键保存漂移值,返回到系统保持状态,以便进行其他程序。
微量水分测定仪通过4分钟自动测定漂移值,以指示设备的干燥程度,以及反映外界环境对测试的影响,此值会作为背景在标定及样品计算中扣除。单位用ml/min表示,即每分钟消耗试剂的毫升数。重新装入新鲜试剂的滴定池的漂移值不应超过30ml/min,最理想的是达到10ml/min.以下。
5、标定
按“方法”键,选择“方法3-水分标定”,确认后选择“1测量”,再次确认后选择标准品、输入标准品的量,确认后按“启动”键,开始标定程序。测定结束,按“确认”键保存并打印标定结果,返回到系统保持状态,以便进行其他程序。多次标定请重复此操作。
试剂滴定度的测量是实验中进行的必要工作。尤其当标准溶液的滴定度因为某些因素比如大气中湿气的渗入、环境温度的变化而改变或可能改变时,就显得更加必须和重要。试剂标定的频率主要取决于滴定试剂的选择,不同的试剂稳定性不一样,另外滴定剂的储存并不是绝对密封的,所以建议在每天滴定前都要进行标定。
5. 国标水分的检测方法
水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下:
1、热干燥法:
① 常压干燥法(此法用的广泛);
② 真空干燥法(有的样品加热分解时用);
③ 红外线干燥法(此法用的广泛);
④ 真空器干燥法(干燥剂法);
2、蒸馏法
3、卡尔费休法
4、水分活度AW的测定
下面我们分别讲述测定水分的方法。
一、常压干燥法
1、特点与原理
⑴特点:此法应用zui广泛,操作以及设备都简单,而且有相当高的度。
⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。
2、干燥法必须符合下列条件(对食品而言):
⑴水分是*挥发成分
这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。
⑵水分挥发要完全
对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。
⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。
例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑
还有H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2
发酵糖(NaHCO3+KHC4H4O6)△ →H2O+CO2+ NaKC4H4O6
高糖高脂肪食品不适应
只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。
我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗?
例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的*点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时)
所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。
3、烘箱干燥法的测定要点
⑴取样(称样)
在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。
⑵干燥条件的选择
三个因素:①温度;②压力(常压、真空)干燥;③时间。
一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。
4、操作方法
清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重)
*油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。
*对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。
*对于液体与半固体样品,要在称量皿中加入海砂,使样品疏松,扩大蒸发的接触面,并且用一个玻璃棒作为容器。先放到沸水浴中烘,烘的差不多,再放到烘箱烘,否则不加海砂样品容易使表面形成一层膜,造成水分不易出来,另外易沸腾的液体飞沫使重量损失。
计算:水分= G2- G1 / W
固形物(%)=100 -水分%
G1 —— 恒重后称量皿重量(g)
G2 —— 恒重后称量皿和样品重量(g)
W —— 样品重量(g)
固形物 —— 指食品内将水分排除以后的全部残留物。其组分有蛋白质、脂肪、粗纤维、无氮抽出物和灰分等。
5、烘箱干燥法产生误差的原因
⑴样品中含有非水分易挥发性物质(酒精、醋酸、香精油、磷脂等);
⑵样品中的某些成分和水分的结合,使测的结果偏低(如蔗糖水解为二分子单糖),主要是限制水分挥发;
⑶食品中的脂肪与空气中的氧发生氧化,使样品重量增重;
⑷在高温条件下物质的分解(果糖对热敏感);
果糖C6H12O6大于70℃△→C6H6O3+ 3H2O
⑸被测样品表面产生硬壳,妨碍水分的扩散;尤其是对于富含糖分和淀粉的样品;
⑹烘干到结束样品重新吸水。
二、真空干燥法
1、原理:利用较低温度,在减压下进行干燥以排除水分,样品中被减少的量为样品的水分含量。
本法适用于在100℃以上加热容易变质及含有不易除去结合水的食品。其测定结果比较接近真正水分。
2、操作方法
准确称2.00~5.00g样品→于烘至恒重的称量皿→至真空烘箱→70℃、真空度93.3~98.6KPa(700~740mmHg)→烘5小时→于干燥皿冷却→称至恒重
计算:水分= G / W
G —— 样品中干燥后的失重(g)
W —— 样品重量(g)
真空干燥法测水分,一般用于100℃以上容易变质、破坏或不易除去结合水的样品,如糖浆、味精、砂糖、糖果、蜂蜜、果酱和脱水蔬菜等样品都可采用真空干燥法测定水分。
三、蒸馏法测定水分(迪安—斯达克)
蒸馏发出现在二十世纪初,当时它采用沸腾的有机液体,将样品中水分分离出来,此法直到如今仍在适用。
1、原理:把不溶于水的有机溶剂和样品放入蒸馏式水分测定装置中加热,试样中的水分与溶剂蒸汽一起蒸发,把这样的蒸汽在冷凝管中冷凝,由水分的容量而得到样品的水分含量。
2、步骤
准确称2.00~5.00g样品→于250ml水分测定蒸馏瓶中→加入约50~75ml有机溶剂→接蒸馏装置→徐徐加热蒸馏→至水分大部分蒸出后→在加快蒸馏速度→至刻度管水量不在增加→读数
计算:
水分=V/W
V —— 刻度管中水层的容量ml
W —— 样品的重量(g)
3、常用的有机溶剂及选择依据
常用的有机溶剂有比水清的,也有比水重的。
苯甲苯二甲苯 CCl4
密度 0.88 0.86 0.86 1.59
沸点 80℃ 80℃ 140℃ 76.8℃
选择依据:对热不稳定的食品,一般不采用二甲苯,因为它的沸点高,常选用低沸点的有机溶剂,如苯。对于一些含有糖分,可分解释放出水分的样品,如脱水洋葱和脱水大蒜可采用苯,要根据样品的性质来选择有机溶剂。
4、蒸馏法的优缺点
优点:
⑴热交换充分
⑵受热后发生化学反应比重量法少
⑶设备简单,管理方便
缺点:
⑴水与有机溶剂易发生乳化现象
⑵样品中水分可能完全没有挥发出来
⑶水分有时附在冷凝管壁上,造成读数误差
对分层不理想,造成读数误差,可加少量戊醇或异丁醇防止出现乳浊液。
这种方法用于测定样品中除水分外,还有大量挥发性物质,例如,醚类、芳香油、挥发酸、CO2等。目前AOAC规定蒸馏法用于饲料、啤酒花、调味品的水分测定,特别是香料,蒸馏法是*的、公认的水分检验分析方法。
四、卡尔—费休法
众所周知,卡尔费休法是测定各种物质中微量水分的一种方法,这种方法自从1935年由卡尔费休提出后,一直采用I2、SO2、吡啶、无水CH3OH(含水量在0.05%以下)配制而成,并且国际标准化组织把这个方法定为国际标准测微量水分,我们国家也把这个方法定为国家标准测微量水分。
1、原理:在水存在时,即样品中的水与卡尔费休试剂中的SO2与I2产生氧化还原反应。
I2 + SO2 + 2H2O → 2HI + H2SO4
但这个反应是个可逆反应,当硫酸浓度达到0.05%以上时,即能发生逆反应。如果我们让反应按照一个正方向进行,需要加入适当的碱性物质以中和反应过程中生成的酸。经实验证明,在体系中加入吡啶,这样就可使反应向右进行。
3 C5H5N+H2O+I2+SO2 → 2氢碘酸吡啶+硫酸酐吡啶
生成硫酸酐吡啶不稳定,能与水发生反应,消耗一部分水而干扰测定,为了使它稳定,我们可加无水甲醇。
硫酸酐吡啶 + CH3OH(无水)→ 甲基硫酸吡啶
我们把这上面三步反应写成总反应式为:
I2+SO2+H2O+3吡啶+CH3OH2氢碘酸吡啶+甲基硫酸吡啶
从反应式可以看出1mol水需要1mol碘,1mol二氧化硫和3mol吡啶及1mol甲醇而产生2mol氢碘酸吡啶、1mol甲基硫酸吡啶。这是理论上的数据,但实际上,SO2、吡啶、CH3OH的用量都是过量的,反应完毕后多余的游离碘呈现红棕色,即可确定为到达终点。
I2︰SO2︰C5H5N = 1︰3︰10
2、卡尔费休试剂的配制与标定
若以甲醇作溶剂,则试剂中I2、SO2、C5H5N(含水量在0.05%以下)三者的克分子数比例为
I2︰SO2︰C5H5N = 1︰3︰10
这种试剂有效浓度取决于碘的浓度。新配制的试剂其有效浓度不断降低,其原因是由于试剂中各组分本身也含有一些水分,但试剂浓度降低的主要原因是由一些副反应引起的,较高消耗了一部分碘。
这也说明了配制这种试剂要单独配,分甲乙两种试剂并且分别贮存,临用时再混合,而且要标定。
甲液 I2的CH3OH溶液
乙液 SO2的CH3OH吡啶溶液
这种方法对试剂要求严格,要求甲醇、吡啶都是无水的,并且要求有KF水分测定仪(上海化工研究所制)
配制:
称85gI2→于干燥的有塞棕色烧瓶中→加670ml无水CH3OH→塞上瓶塞→振摇使I2全部溶解→加270ml吡啶→混匀→于冰水浴冷却→通干燥的SO2气体60g→塞上瓶塞→于暗处24小时后标定使用
标定:
先加50ml无水甲醇→于反应器中→接通电源→启动电磁搅拌器→用KF试剂滴入甲醇中使甲醇中尚残留的痕量水分与试剂达到终点(即指针到达一定刻度,不记录KF试剂用量)→保持一分钟→用10μl注射器从反应器加料口注入10μl蒸馏水(相当于0.01g水)→电流表指针接近零点→用KF试剂滴定到原定终点→记录
F =G*10
6. 怎样检测水培营养液养分含量多少
水培是无土栽培中的一种,是指植物根系直接与营养液接触,不用基质的栽培方法。最早的水培是将植物根系浸入营养液中生长,这种方式会出现缺O2现象,影响根系呼吸,严重时造成料根死亡。为了解决供O2 问题,英国Cooper在1973年提出了营养液膜法的水培方式,简称”NFT”(Nutrient Film Technique)。它的原理是使一层很薄的营养液(0.5-1厘米)层,不断循环流经作物根系,既保证不断供给作物水分和养分,又不断供给根系新鲜O2。NFT法栽培作物,灌溉技术大大简化,派漏不必每天计算作物需水量,营养元素均衡供给,根系与土壤隔离,可避免各种土传病害,也无需进行土壤消毒,但是要使营养液不断循环流经作物根系需要持续打开水泵,电力资源消耗严重,且营养液层太浅,部分根系暴露在空气中,不利于植物的生长。
不同的水培方法具有不同的优缺点,但所有的水培方法均要注意保证营养液中具有足够的营养成分、酸碱度、氧气浓度等环境条件,水培的植物都需要经过多次的更换营养液,不同品种对营养的吸收及消耗不一样,导致每一个品种所需要更换营养液的周期不一致。即使是同一品种,不同植株个体之间也存在不同的营养吸收情况,从而产生植株之间拥有不同的营养液更换周期。但目前的组织培养由于缺少对营养液营养成分的检测方法,所以都是固定在一个统一的时间对植株进行营养液更换,这种做法导致部分消耗较大的植株面临营养不足的环境,同时消耗较慢的植株则会造成浪费。
技术实现要素:
基于现有技术存在上述问题,本发明提供一种植物水培营养液成分检测方法,其通过传感器技术实时检测营养液中的离子成分,结合生物化学信息换算出营养液中的实际成分,再根据对栽培植物的物种信息及生长状态的分析计算出标准营养液成分变化规律,最后将实际成分和标准成分进行比对,当比对结果出现较大偏差的时候,分析判断营养液是否需要更换,并发出提醒,提醒技术人员更换营养液,达到信息化、现代化农业的要求,并起到降低种植成本的作用。
一种植物水培营养液成分检测方法,其包括以下步骤:
步骤S10初始数据录入和检测:离子检测模块通过拦码传感器检测水培营养液的离子浓度,将离子浓度数据定义为初始浓度;
步骤S20营养分析:生物物种分析模块调用组织培养管理模块中的数据,根据水培阶段和植物种简羡哪类结合本地数据库中的数据分析当前植物物种在相应的水培阶段对营养液营养成分的影响;
步骤S30检测离子实时浓度:离子检测模块通过传感器持续检测水培营养液的离子浓度,定义为实时离子浓度;
步骤S40营养液营养变化趋势计算:营养分析模块调用营养液配方离子浓度数据,根据步骤S20的分析结果计算实时标准离子浓度;
步骤S50离子成分比对:中央处理器根据将步骤S30得出的实时离子浓度与步骤S40分析得出的实时标准离子浓度进行比对,当比对结果不一致时发出更换营养液提醒;
步骤S60营养成分监测:中央处理器监测步骤S30得出的实时离子浓度,当实时离子浓度低于设定的警报值时发出更换营养液提醒。
其中,所述的步骤S10还包括步骤S11,将初始浓度与标准配方浓度进行比对,当浓度与标准浓度不一致时发出营养液出错提醒。
其中,所述的步骤S10或者步骤S30分别包括步骤S12和步骤S31,中央处理器向搅拌设备发送搅拌营养液指令,搅拌设备接到指令后对营养液进行搅拌。
其中,所述的步骤S30还包括步骤S32营养液酸碱度检测,酸碱度检测传感器检测营养液的pH值,当pH值超出预设范围时发出调节营养液pH值提醒。
其中,所述的步骤S20包括步骤S21分析植物物种对营养液营养成分吸收影响,步骤S22分析植物物种对营养液排出的代谢废物对营养液营养成分的影响。
其中,所述的步骤S50中的比对结果不一致包括S30得出的实时离子浓度与步骤S40分析得出的实时标准离子浓度偏差超过10%-30%和S30得出的实时离子种类与步骤S40分析得出的实时标准离子种类不一致。
具体实施方式
下面结合具体实施例对本发明作进一步的描述。
一种植物水培营养液成分检测方法,其包括以下步骤:
步骤S10初始数据录入和检测:离子检测模块通过传感器检测水培营养液的离子浓度,将离子浓度数据定义为初始浓度;
步骤S20营养分析:生物物种分析模块调用组织培养管理模块中的数据,根据水培阶段和植物种类结合本地数据库中的数据分析当前植物物种在相应的水培阶段对营养液营养成分的影响;
步骤S30检测离子实时浓度:离子检测模块通过传感器持续检测水培营养液的离子浓度,定义为实时离子浓度;
步骤S40营养液营养变化趋势计算:营养分析模块调用营养液配方离子浓度数据,根据步骤S20的分析结果计算实时标准离子浓度;
步骤S50离子成分比对:中央处理器根据将步骤S30得出的实时离子浓度与步骤S40分析得出的实时标准离子浓度进行比对,当比对结果不一致时发出更换营养液提醒;
步骤S60营养成分监测:中央处理器监测步骤S30得出的实时离子浓度,当实时离子浓度低于设定的警报值时发出更换营养液提醒。
作为优选实施例,所述的步骤S10还包括步骤S11,将初始浓度与标准配方浓度进行比对,当浓度与标准浓度不一致时发出营养液出错提醒。
作为优选实施例,所述的步骤S10或者步骤S30分别包括步骤S12和步骤S31,中央处理器向搅拌设备发送搅拌营养液指令,搅拌设备接到指令后对营养液进行搅拌。
作为优选实施例,所述的步骤S30还包括步骤S32营养液酸碱度检测,酸碱度检测传感器检测营养液的pH值,当pH值超出预设范围时发出调节营养液pH值提醒。
作为优选实施例,所述的步骤S20包括步骤S21分析植物物种对营养液营养成分吸收影响,步骤S22分析植物物种对营养液排出的代谢废物对营养液营养成分的影响。
作为优选实施例,所述的步骤S50中的比对结果不一致包括S30得出的实时离子浓度与步骤S40分析得出的实时标准离子浓度偏差超过10%-30%和S30得出的实时离子种类与步骤S40分析得出的实时标准离子种类不一致。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
7. 有机肥原料水分用什么方法检测
有机肥原料水分仪有手持测量,MS-100卤素水分测定仪,在线连续测量多种测量方式。上海佳实都有,其中,MS-100卤素水分仪测量结果准确,性能佳,一键测量,方便实用。
8. 水分测定常用什么方法它对被检测物有何要求误差可能来自哪方面
你问这个问题太好了,检测水分含水率方法非常多,我在这里主要介绍两种给你参考,卡尔费休法,冠亚水分测定仪,首先这两款水分测定仪各有千秋,卡尔费休法水分测定仪属于化学方法,需要很贵的化学试剂,冠亚水份仪是一种物理方法,仪器本身没有易耗品,买回去不会担心后期使用费用,放心使用即可
下面我在告诉你这两款水分仪对检测物要求,卡尔费休检测超低水分,像检测物水分在100PP,超过1%不建议用此方法检测,代表性检测物像石油,不能用物理方法检测的易燃,易爆,易挥发样品,这之类卡尔费休是首先,当然了,物理法有些也是可以检测的
那么,在来说说误差,卡尔费休可能导致的误差有一下几方面,化学试剂,人为操作,冠亚水分测定仪,无风,无震动,使用坏境无磁场,仅此而已
望采纳,3Q哟