1. 斜齿轮蜗轮蜗杆减速机常见问题及解决方法
一、常搏宴见故障 (1)蜗轮磨损 (2)传动小斜齿轮磨损 (3)轴承(蜗杆处)损坏 (4)减速机发热和漏油。 二、故障原因分析 1、蜗轮磨损。 蜗轮一般采用锡喊卖青铜,配对的蜗杆材料一般用45钢淬硬至HRC45一55,还常用40C:基渗银淬硬HRC50一55
2. 蜗杆传动有什么特点常用于什么场合
特点
传动比大,结构紧凑,传动平稳,无噪音。因为蜗杆齿是连续不间断的螺旋齿,它与蜗轮齿啮合时肢激是连续不断的,蜗杆齿没有进入和退出啮合的过程,因此工扰森作平稳,冲击、震动、噪音都比较小。
具有自锁性。蜗杆的螺旋升角很小时,蜗杆只能带动蜗轮传动,而蜗轮不能带动蜗杆转动。
蜗杆传动效率低,一般认为蜗杆传动效率比齿轮传动低。尤其是具有自锁性的蜗杆传动,其效率在0.5以下,一般效率只有0.7~0.9。
发热量大,齿面容易磨损,成本高。
常用于场合:
蜗杆传动广泛应用在机床、汽车、仪器、冶金机械及其它机器或设备中。
(2)蜗杆传动胶合破坏的解决方法扩展阅读:
在蜗杆传动中,蜗轮轮齿的失效形式有点蚀、磨损、胶合和轮齿弯曲折断。但一般蜗历李袜杆传动效率较低,滑动速度较大,容易发热等,故胶合和磨损破坏更为常见。
为了避免胶合和减缓磨损,蜗杆传动的材料必须具备减摩、耐磨和抗胶合的性能。
一般蜗杆用碳钢或合金钢制成,螺旋表面应经热处理(如淬火和渗碳),以便达到高的硬度(HRC45~63),然后经过磨削或珩磨以提高传动的承载能力。
蜗轮多数用青铜制造,对低速不重要的传动,有时也用黄铜或铸铁。
为了防止胶合和减缓磨损,应选择良好的润滑方式,选用含有抗胶合添加剂的润滑油。对于蜗杆传动的胶合和磨损,还没有成熟的计算方法。
齿面接触应力是引起齿面胶合和磨损的重要因素,因此仍以齿面接触强度计算为蜗杆传动的基本计算。
3. 滑动轴承的损坏类型损坏原因及处理方法都有哪些
一、胶合轴承过热、载荷过大,操作不当或温度控制系统失灵
1、在运动中如发现轴承过热,应立即停车检州腊备查,最好使转子在低速下继续运转,或继续供油一段时间,直到轴瓦冷下来为止。不然,轴瓦上的巴氏合金由于胶合而粘在轴颈上,修起来麻烦。
2、防止润滑油不足或油中混入杂质,以及转子安装不对中。
3、胶合损坏较轻的轴瓦可以用刮研修理方法消除,继续使用。
二、疲劳破裂由于不平衡引起的振动、轴的挠曲与边缘载荷、过载等,引起轴承巴氏合金疲劳破裂。轴承检修安装质量不高
1、提高安装质量,减少轴承振动。
2、防止偏载和过载。
3、采用适宜的巴氏合金以及新的轴承结构。
4、严格控制轴承温升。
三、拉毛由于润滑油把大颗粒的污垢带入轴承间隙内,并嵌藏在轴承轴衬上,使轴承与轴颈(或止推盘)接触时,形成硬痂,在运转时会严重地刮局者伤轴的表面,拉毛轴承注意油路洁净,尤其是检修中,应注意将金属屑或污物清洗干净。
磨损及册毁刮伤由于润滑油中混有杂质、异物及污垢。检修方法不妥,安装不对中。使用维护不当,质量控制不严。
1、清洗轴颈、油路、油过滤器,并更换洁净的符合质量要求的润滑油。
2、配上修刮后的轴瓦或新轴瓦。
3、如发现安装不对中,应及时找正。
4、注意检修质量。
四、穴蚀由于轴承结构不合理(轴承上开的油污不合理),轴的振动,油膜中形成蒸汽泡,蒸汽泡破裂,轴瓦局部表面产生真空,引起小块剥落产生穴蚀破坏1、增大供油压力。
2、改善轴瓦油沟、油槽形状,修饰沟槽的边缘或形状,以改进油膜流线的形状。
3、减少轴承间隙,减少轴心晃动。
4、换较适宜的轴瓦材料。
五、电蚀由于绝缘不好或接地不良,或产生静电,在轴颈与轴瓦之间形成一定的电压,穿透轴颈与轴瓦之间的油膜而产生电火花,把轴瓦打成麻坑1、检查机器的绝缘情况,特别要注意一些保护装置(如热电阻、热电偶等)的导线是否绝缘完好。
2、检查机器接地情况。
3、如果电蚀后损坏不太严重,可以刮研轴瓦。
4、检查轴颈,如果轴颈上产生电蚀麻坑、应打磨轴颈去除麻坑。
4. 2018-08-23 蜗杆传动
12.1 蜗杆概述
12.1.1 蜗杆蜗轮的形成
蜗杆传动是用来传递空间交错轴之间的回转运动和动力的,它由蜗杆和蜗轮组成,两轴线交错角可为任意值,一般采用90°。
蜗杆蜗轮传动是由交错斜齿圆柱齿轮传动演变而来的。
12.1.2 蜗杆蜗轮传动的类型
根据蜗杆形状不同可分为圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动。
根据蜗杆齿廓形状及形成原理不同,蜗杆传动的分类如下。圆柱蜗杆传动:阿基米德圆柱蜗杆传动;法向直廓圆柱蜗杆传动;渐开线圆柱蜗杆传动;锥面包络圆柱蜗杆传动;圆弧圆柱蜗杆传动;双圆弧圆柱蜗杆传动。环面蜗杆传动:直廓环面蜗杆传动;平面包络环面蜗杆传动;渐开面包络环面蜗杆传动;锥面包络环面蜗杆传动。
圆柱蜗杆传动。可分为普通圆柱蜗杆传动和圆弧圆柱蜗杆传动。普通圆柱蜗杆传动一般是在车床上用直线刀刃的态世顷车刀车制的。根据不同的齿廓曲线,普通圆柱蜗杆可分为阿基米德圆柱蜗杆(ZA蜗杆);法向直廓圆柱蜗杆(ZN蜗杆);渐开线圆柱蜗杆(ZI蜗杆);锥面包络圆柱蜗杆(ZK蜗杆)等四种。阿基米德圆柱蜗杆(ZA蜗杆),车削阿基米德圆柱蜗杆与加工梯形螺纹类似,其车刀车削刃夹角2α=40°,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线。法向直廓圆柱蜗杆(ZN蜗杆),端面齿廓为延伸渐开线,法面齿廓为直线,也是用直线刀刃的单刀或双刀在车床上车削加工。渐开线圆柱蜗杆(ZI蜗杆),端面齿廓为渐开线,相当于一个少齿数、大螺旋角的渐开线圆柱斜齿轮,可用两把直线刀刃的车刀在车床上车削加工,刀具的齿形角应等于蜗杆的基圆柱螺旋角。锥面包络蜗杆(ZK蜗杆),非线性螺旋齿面蜗杆,只能在铣床上铣制并在磨床上磨削,加工时,工件做螺旋运动,刀具同时绕自身的轴线做回转运动,这种蜗杆便于磨削,精度较高,应用日渐广泛。圆弧圆柱蜗杆传动(ZC蜗杆返旁),螺旋面是用刃边为凸圆弧形的刀具切制的,蜗轮是用范成法制造的,在中间平面上,蜗杆的齿廓为凹弧形,而与之相配的蜗轮的齿廓则为凸弧形,所以是一种凹凸弧齿廓相啮合的传动,也是一种线接触的啮合传动。
环面蜗杆传动。特征是蜗杆体在轴向的外形是以凹圆弧为母线所形成的的旋转曲面。在这种传动的啮合带内,蜗轮的节圆位于蜗杆的节弧面帆陆上,即蜗杆的节弧沿蜗轮的节圆包着蜗轮。在中间平面内,蜗杆和蜗轮都是直线齿廓。还有包络环面蜗杆传动,分为一次包络和二次包络环面蜗杆传动两种。
锥蜗杆传动。一种空间交错轴之间的传动,两轴交错角通常为90°,蜗杆是由在节锥上分布的等导程的螺旋所形成的。蜗轮在外观上就像是一个曲线齿锥齿轮,是用与锥蜗杆相似的锥滚刀在普通滚齿机上加工而成的。
12.1.3 蜗杆传动的特点和应用
蜗杆传动的特点:
当使用单头蜗杆时,蜗杆旋转一周,蜗轮只转过一个齿距,因而能实现大的传动比。在动力传动中,一般传动比i = 5~80;在分度机构或手动机构的传动中,传动比可达300;若只传递运动,传动比可达1000。由于传动比大,零件数目少,所以结构很紧凑;
蜗杆传动中,由于蜗杆齿是连续不断的螺旋齿,它和蜗轮齿是逐渐进入啮合及逐渐退出啮合的,同时啮合的齿对较多,故冲击载荷小,传动平稳,噪声低;
当蜗杆的螺旋升角小于啮合面的当量摩擦角时,蜗杆传动具有自锁性;
蜗杆传动与螺旋齿传动相似,在啮合处相对滑动。滑动速度大时,会产生较严重的摩擦与磨损,引起发热,恶化润滑,摩擦损失较大,效率低;当传动具有自锁性时,效率仅为0.4左右。同时由于摩擦与磨损严重,常需耗用有色金属制造蜗轮(或轮圈),以便与钢制蜗杆配对组成减摩性良好的滑动摩擦副。
蜗杆传动的应用。由于蜗杆传动具有以上特点,故广泛用于两轴交错、传动比较大、传递功率不太大或间歇工作的场合。当要求传递大功率时,为提高传动效率,常取蜗杆头数z₁=2~4。此外,由于具有自锁性,故常用在卷扬机等起重机械中,起安全保护作用。
12.2 普通圆柱蜗杆传动的主要参数及几何尺寸计算
12.2.1 普通圆柱蜗杆传动的主要参数及其选择
主要参数有模数m,压力角α、蜗杆的分度圆直径d₁、蜗杆头数z₁及蜗轮齿数z₂等。进行蜗杆传动的设计时,首先要正确的选择参数。
模数m和压力角α。与齿轮传动一样,蜗杆传动的几何尺寸也以模数为主要计算参数。在中间平面内蜗杆蜗轮传动的正确啮合条件为:蜗杆的轴面模数、压力角应与蜗轮的端面模数、压力角相等,即ma₁ = mt₂ = m,αa₁ = αt₂。ZA蜗杆的压力角αa为标准值(20°),其余三种(ZN,ZI,ZK)蜗杆的法向压力角αn为标准值,轴向压力角与法向压力角的关系为tan αa = tan αn/cos γ。其中,γ为导程角。
蜗杆的分度圆直径d₁和直径系数q。为了限制蜗轮滚刀的数目,及便于滚刀的标准化,就对每一标准模数规定了一定数量的蜗杆分度圆直径d₁,而把比值q = d₁/m,称为蜗杆的直径系数。d₁与q已有标准值。如果采用非标准滚刀或飞到切制蜗轮,d₁与q值可不受标准的限制。
蜗杆头数z₁。蜗杆头数z₁可根据要求的传动比和效率来确定。单头蜗杆传动的传动比可以较大,但效率较低。如果提高效率,应增加蜗杆的头数。但蜗杆头数过多又会给加工带来困难。所以,通常蜗杆头数取为1,2,4,6。
导程角γ。蜗杆的直径系数q和蜗杆头数z₁选定之后,蜗杆分度圆上的导程角γ也就确定了。 tan γ = z₁Pa/Πd₁ = z₁m/d₁ = z₁/q 。
传动比i和齿数比u。传动比i = n₁/n₂,n₁,n₂是蜗杆和蜗轮的转速。齿数比u = z₂/z₁,z₂是蜗轮的齿数,当蜗杆为主动时, i = n₁/n₂ = z₂/z₁ = u 。
蜗轮齿数z₂。主要根据传动比来确定。为了避免干涉与根切,理论上应使z₂ ≥ 17。当z₂ < 26时,啮合区显着减小,影响传动平稳性,而z₂ ≥ 30时,则可始终保持有两对以上的齿啮合,所以通常规定z₂ > 28。对于动力传动,z₂一般不大于80.
蜗杆传动的标准中心距a。当蜗杆节圆与分度圆重合时称为标准传动,其标准中心距为 a=(d₁+d₂)/2=(q+z₂)·m/2 。
12.2.2 普通圆柱蜗杆传动的几何尺寸计算
设计蜗杆传动时,一般先根据传动的功用和传动比的要求,选择蜗杆头数z₁和蜗轮齿数z₂,然后按强度计算确定中心距a和模数m,最后计算出蜗杆、蜗轮的几何尺寸。
12.3 蜗杆传动的失效形式、设计准则及常用材料
12.3.1 失效形式和设计准则
和齿轮传动一样,蜗杆传动的失效形式也有点蚀(齿面接触疲劳破坏)、齿根折断、齿面胶合及过度磨损等。失效经常发生在蜗轮轮齿上,所以,一般只对蜗轮轮齿进行承载能力计算。
蜗杆与蜗轮齿面间有较大的相对滑动,增加了产生胶合和磨损失效的可能性。因此,蜗杆传动的承载能力往往受到抗胶合能力的限制。
在开式传动中多发生齿面磨损及过度磨损引起的轮齿折断,因此应以保证齿根弯曲疲劳强度作为主要设计准则。
在闭式传动中,蜗杆副多因齿面胶合或点蚀而失效。因此,通常是按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。此外,闭式蜗杆传动中,由于散热较为困难,还应做热平衡核算。
12.3.2 常用材料
常用青铜作蜗轮的齿圈,与淬硬的钢制蜗杆相配。
蜗杆。一般是用碳钢或合金钢制成,要求齿面光洁并具有较高硬度。高速重载蜗杆常用20Cr,20CrMnTi(渗碳淬火到56~62HRC)或40Cr,40SiMn,45钢(表面淬火到45~55HRC)等,并应磨削。一般蜗杆可采用40钢、45钢,经调质处理(硬度为220~250HBS)。在低速或人力传动中,蜗杆可不经热处理,甚至可采用铸铁。
蜗轮。常用的蜗轮材料为10-1锡青铜、5-5-5锡青铜、10-3铝青铜及灰铸铁等。10-1锡青铜抗胶合和耐磨性能好,但价格较高,允许的滑动速度可达25m/s。在滑动速度Vs≤12m/s的蜗杆传动中,可采用含锡量低的5-5-5锡青铜。10-3铝青铜的抗胶合性较锡青铜差一些,切削性能差,但强度高、铸造性能好、耐冲击、价格便宜,一般用于滑动速度Vs≤6m/s的传动;如果滑动速度不高(Vs<2m/s),对效率要求也不高,可采用球墨铸铁或灰铸铁。蜗轮也可用尼龙或增强尼龙材料制成。
12.4 蜗杆传动的受力分析
不计摩擦力的影响时,各力的大小可按下列各式计算: Ft₁ = Fa₂ = 2T₁/d₁,Fa₁ = Ft₂ = 2T₂/d₂,Fr₁ = Fr₂ = Ft₂tan α 。Fn = Fa₁/cos αn·cos γ = Ft₂/cos αn·cos γ = 2T₂/d₂·cos αn·cos γ 。其中,T₁,T₂分别是蜗杆及蜗轮上的转矩,T₂ = T₁·i₁₂·η,η为蜗杆传动的效率;d₁,d₂,分别是蜗杆及蜗轮的分度圆直径。
12.5 圆柱蜗杆传动的计算
12.5.1 蜗轮齿面接触疲劳强度计算
计算应力。强度校核公式为 σH = ZeZp(KaT₂/a³)½ ≤ [σH] ,设计式为 a ≥ [KaT₂(ZeZp/[σH])²]⅓ 。其中,a是中心距;Ze是材料综合弹性系数,钢与铸锡青铜配对时,取Ze = 150,与铝青铜或灰铸铁配对时,取Ze = 160;Zp是接触系数,用以考虑当量曲率半径的影响,由蜗杆分度圆直径与中心距之比表示,一般取0.3~0.5,取小值时,导程角大,因而效率高,但蜗杆刚性较小;Ka,使用系数,Ka = 1.1~1.4,当冲击载荷、环境温度高、速度较高时,取最大值。
许用接触应力[σH]。对于铸锡青铜,可以查表;对于铸铝青铜及灰铸铁,其主要失效形式是胶合2而不是接触强度,而胶合与相对速度有关。由设计公式算出中心距a后,可由下列公式粗算出蜗杆分度圆直径d₁和模数m:d₁≈0.68aⁿ,n=0.875,m=(2a-d₁)/z₂。然后选定标准模数m及q,d₁的数值。
12.5.2 蜗轮齿根弯曲强度计算
通常把蜗轮近似的当做斜齿圆柱齿轮来考虑,验算公式为 σF = (1.53KaT₂/d₁d₂mcos γ)·Yf₂ ≤ [σF] ,设计式为 m²d₁≥(1.53KaT₂/z₂cos γ[σF])·Yf₂ 。其中,γ为螺杆导程角, γ=arctan (z₁/q) ;[σF]为蜗轮许用弯曲应力;Yf₂是蜗轮齿形系数,由当量齿数Zv = Z₂/cos³γ,查渐开线轮齿形系数。
12.5.3蜗杆传动的刚度计算
蜗杆较细长,支承跨距较大,受力后如产生过大的变形,就会造成轮齿上的载荷集中,影响蜗杆与蜗轮的正确啮合,所以蜗杆还需进行刚度校核。刚度条件为 y = [(Ft₁²+Fr₁²)½/48EI]·l³ ≤ [y] 。其中,Ft₁是蜗杆所受的圆周力;Fr₁是蜗杆所受的径向力;E是蜗杆材料的弹性模量;I是蜗杆危险截面的惯性矩;l是蜗杆两端支承间的跨距;[y]是许用最大挠度,[y]=d₁/1000,此处d₁为蜗杆分度圆直径。
12.6 普通圆柱蜗杆传动的效率、润滑及热平衡计算
12.6.1 蜗杆传动的效率
传动效率。闭式蜗杆传动的功率损耗一般包括三部分,即啮合摩擦损耗、轴承摩擦损耗及浸入油浴中的零件搅油时的油阻损耗。其中最主要的是齿面相对滑动而引起的啮合损耗。蜗杆主动时,蜗杆传动的总效率为 η=(0.95~0.96)tan γ/tan (γ+ρ') 。其中,γ是普通圆柱蜗杆分度圆柱上的导程角;ρ'是当量摩擦角,ρ' = arctan f',f'为当量摩擦系数,主要与蜗杆副材料、表面状况以及滑动速度有关。
增大导程角可提高效率,故在动力传动中多采用多头蜗杆,但导程角过大,会引起蜗杆加工困难,且导程角达到28°之后,效率提高很少。
滑动速度。 Vs = v₁/cos γ = Πd₁n₁/60x1000cos γ 。其中,v₁是蜗杆分度圆的圆周速度;d₁是蜗杆分度圆直径;n₁是蜗杆的转速,r/min。
12.6.2 蜗杆传动的润滑
润滑对蜗杆传动来说具有特别重要的意义。因为润滑不良时,传动效率会显着下降,并且会带来剧烈的磨损和产生胶合破坏的危险,所以往往采用粘度大的矿物油进行良好的润滑,在润滑油中还常加入添加剂,使其提高抗胶合能力。
用油浴润滑时,常采用蜗杆下置式,由蜗杆带油2润滑。但当蜗杆线速度v₁>4m/s时,为了减小搅油损失,常常将蜗杆置于蜗轮之上,形成上置式传动,由蜗轮带油润滑。
12.6.3 蜗杆传动的热平衡计算
在闭式传动中,热量通过箱壳散逸,要求箱体内的油温t℃和周围空气温度t0℃之差不超过允许值,即 ∆t = 1000P(1-η)/αdS ≤ [∆t] 。其中,[∆t]为温差允许值,一般为60~70℃;αd是箱体的表面传热系数,一般取值为10~17,空气流通良好时,取偏大值;P是蜗杆传递的功率,单位默认为kw;S是散热面积,指箱体外壁与空气接触的内壁被油飞溅到的箱壳面积,对于箱体上的散热片,其散热面积按50%计算。
如果温差超过允许值,可采用下述冷却措施:增加散热面积;提高表面传热系数,在蜗杆轴上装置风扇,或在传动箱内装循环冷却管路。
12.7 圆柱蜗杆和蜗轮的结构设计
12.7.1 蜗杆结构
蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。当蜗杆螺旋部分的直径较大时,可以将蜗杆与轴分开制作。
12.7.2 蜗轮结构
常用的蜗轮结构由以下几种:
整体式。主要用于铸铁蜗轮或尺寸很小的青铜蜗轮。
组合式。为了节约贵重的有色金属,对大尺寸的蜗轮通常采用组合式结构,即齿圈由青铜等有色金属制造,而轮芯用钢或铸铁制成。,齿圈与轮芯多用过盈配合,并加装4~8个紧定螺钉,以增强连接的可靠性。这种结构多用于尺寸不太大或工作温度变化较小的地方,以免热胀冷缩影响配合的质量。
螺栓连接式。轮圈与轮芯可用铰制孔用螺栓连接,螺栓的尺寸和数目可参考蜗轮的结构尺寸决定,然后做适当的校核。装拆比较方便,多用于尺寸较大或磨损后需要更换齿圈的场合。
拼铸式。这是在铸铁轮芯上加铸青铜齿圈,然后切齿,只用于成批制造的蜗轮。
5. 蜗杆传动的优缺点是什么蜗杆的主要失效形式是什么
蜗杆传动的优点:
1.传动比大铅余,结构紧凑。蜗杆头数用Z1表示(一般Z1=1~4),蜗轮齿数用Z2表示。从传动比公式I=Z2/Z1可以看出,当Z1=1,即蜗杆为单头,蜗杆须转Z2转蜗轮才转一转,因而可得到很大传动比,一般在动力传动中,取传动比I=10-80;在分度机构中,漏激辩I可达1000。这样大的传动比如用齿轮传动,则需要采取多级传动才行,所以蜗杆传动结构紧凑,体积小、重量轻。
返缺2. 传动平稳,无噪音。因为蜗杆齿是连续不间断的螺旋齿,它与蜗轮齿啮合时是连续不断的,蜗杆齿没有进入和退出啮合的过程,因此工作平稳,冲击、震动、噪音都比较小。
蜗杆传动
蜗杆传动
3. 具有自锁性。蜗杆的螺旋升角很小时,蜗杆只能带动蜗轮传动,而蜗轮不能带动蜗杆转动。
缺点:
1. 发热量大,齿面容易磨损,成本高。
2. 蜗杆传动效率低,一般认为蜗杆传动效率比齿轮传动低。尤其是具有自锁性的蜗杆传动,其效率在0.5以下,一般效率只有0.7~0.9。
失效形式
在蜗杆传动中,蜗轮轮齿的失效形式有点蚀、磨损、胶合和轮齿弯曲折断。但一般蜗杆传动效率较低,滑动速度较大,容易发热等,故胶合和磨损破坏更为常见。
6. 蜗杆传动的主要失效形式是什么相应的设计准则是什么
1.主要失效是磨损、胶合、齿面点蚀、轮齿折断。
2.在开式传动中多发生齿面磨损和齿面折断,应以保证齿根弯曲疲劳强度作为设计准则
在闭式传动中多因齿面胶合或点蚀而失衡腊效,通常以蜗轮轮齿坦桐的齿面接触疲劳强度进行设计,对Z2>=90的让拦坦蜗杆还应按蜗轮轮齿的齿根 弯曲疲劳强度进行校核,此外闭式蜗杆传动中还应做热平衡核算
7. 蜗杆传动的热平衡核算不满足要求时,可以采取哪些措施
1)由于蜗困州谈杆迹让传动效率较低,发热量大,汪碰在闭式蜗杆传动中,如果散热条件不 好,会引起润滑不良而产生齿面胶合。 2)在箱壳外面增加散热片;在蜗杆轴上安装风扇;在箱体油池内装设蛇形冷 却水管;用循环油冷却。
8. 为了减少磨损和防止胶合破坏通常蜗杆采用什么制造蜗轮采用什么制造
为了减少磨损和防衡咐搭止胶合破坏通常蜗杆采用合金结构钢或优质碳咐拿素结构钢制造,蜗轮采用黄铜或优质碳简搜素结构钢制造。
9. 蜗杆传动主要有哪些失效形式有何防止措施
蜗杆传动的失效形式与齿轮传闹扮动相同,也是齿面点蚀、磨损、胶合和御弯李轮齿折断。由于蜗杆传动啮合面间的摩擦力大,所以最常见的失效是胶合和磨损。又因蜗轮的强度较差,失效主要是发生在蜗轮轮齿上。镇迟一般采取下列措施:正确地选择材料;确定强度足够的几何尺寸;采用必要的散热措施。
10. 蜗轮蜗杆传动原理
蜗轮蜗杆传动原理:蜗轮蜗杆传动是在空间交错的两轴间传递运动和动力,两轴线间的夹角可为任意值,常用的为90°。
蜗轮蜗杆传动由蜗杆和蜗轮组成,一般蜗杆为主动件。蜗杆和螺纹一样有右旋和左旋之分蜗杆传动,分别称为右旋蜗杆和左旋蜗杆。蜗杆上只有一条螺旋线的称为单头蜗杆,即蜗杆转一周,涡轮转过一齿,若蜗杆上有两条螺旋线,就称为双辩唤头蜗杆,即蜗杆转一周,涡轮转过两齿。
(10)蜗杆传动胶合破坏的解决方法扩展阅读
蜗轮蜗杆传动的失效形式及解决办法:
在蜗轮蜗杆传动中,蜗轮轮齿的失效形式有点蚀、磨损、胶合和轮齿弯曲折断。但一般蜗杆传动效率较低,滑动速度较大,容易发热等,故胶合和磨损破坏更为常见。
蜗轮蜗杆传动为了避免胶合和减缓磨损,蜗杆传动的材料必须具备减摩、耐毁灶族磨和抗胶合的性能。一般蜗杆用碳钢或合金钢制成,螺旋表面应经热处理,以便达到高的硬度,然后经过磨削或珩磨以提高传动的承载能力。
蜗轮多数用青铜制造,对低速不重要的传动,有时也用黄铜或铸铁。为了防止胶合和减缓磨损,应选择良好的润滑方式,选用含有抗胶合添加剂的润滑油。