① 高效液相色谱有几种定量方法其中那种是比较精确的定量方法并简述
峰面积法、峰高法、归一法、外标法。峰面积法是比较精确的定量方法
1、焦磷酸测序法
测序法的基本原理是双脱氧终止法,是进行基因突变检测的可靠方法,也是使用最多的方法。
但其过程繁琐、耗时长,灵敏度不高,对环境和操作者有危害,故在临床应用中存在一定的限制。
焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。
焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力。
为大通量、低成本、适时、快速、直观地进行单核苷酸多态性研究和临床检验提供了非常理想的技术操作平台。
2、微数字聚合酶链反应
该方法为将样品作大倍数稀释和细分,直至每个细分试样中所含有的待测分子数不超过1个,再将每个细分试样同时在相同条件下聚合酶链反应后,通过基因芯片逐个计数。
该方法为绝对定量的方法。
3、聚合酶链反应-限制性片段长度多态性分析技术
聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点是能将微量的DNA大幅增加。
该法一般用于检测已知的突变位点。
因此,无论是化石中的古生物、历史人物的残骸,还是几十年前凶杀案中兇手所遗留的毛发、皮肤或血液,只要能分离出一丁点的DNA,就能用PCR加以放大,进行比对。
这也是“微量证据”的威力之所在。
由1983年美国Mullis首先提出设想,1985年由其发明了聚合酶链反应,即简易DNA扩增法,意味着PCR技术的真正诞生。
到如今2013年,PCR已发展到第三代技术。
1976年,台湾科学家钱嘉韵,发现了稳定的Taq DNA聚合酶,为PCR技术发展也做出了基础性贡献。
PCR是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右)。
DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
4、高效液相色谱法
该方法是基于发生错配的杂合双链DNA与完全匹配的纯合双链DNA解链特征的差异而进行检测的,可检测出含有单个碱基的置换、插入或缺失的异源双链片段。
与测序法相比,该法简单、快速,不仅可用于已知突变的检测,还可用于未知突变的扫描。
但只能检查有无突变,不能检测出突变类型,结果判断容易出错。
5、单链构象异构多态分析技术
依据单链DNA在某一种非变性环境中具有其特定的第二构象,构象不同导致电泳的迁移率不同,从而将正常链与突变链分离出来。
与测序法相比,灵敏性更高。
③ DNA绝对定量要怎么进行
拷贝数计算根据下面就可以,很简单的。拷贝数=(质量÷分子量)×6.0e+23。
每个明大雹碱基的平均分子量是324.5,质粒的分子量是324.5*3560*2=2310440,10μg质粒的摩尔数是10/2310440/1000000=4.328e-12,一摩尔等于6.023e+23,则10μg质粒有4.328e-12*6.023e+23=2.607e+12拷贝。
一对碱基的分子量为660Da,重量为1e-15μg,则10μg质粒拷贝数=10/(1e-15*3560)=2.7e+12分子。
例如pGEM-T载体长3003bp,插入的目的片断长162bp,每个碱基的平均分子量激帆是330,(每对碱基/bp是660,)质粒原液约250μg/mL,阿弗加德罗常数(每mol的微粒数)是6.02e+23/mol。那么每2μl的绝对模板数量是:=14.4e+10所以,10-4~10-7质粒的模板分子数是14.4e+6~3。简单的说:每ul质粒拷贝数=(质量/分子量)x(6.0e+23)=[质粒浓度(ng/ul)x1ul]x10-9/[(质粒分子量+插入片仿空段分子量)x660]x(6.0e+23个/mol)。
④ 什么是相对定量和绝对定量啊
绝对定量的目的是测定目的基因在样本中的分子数目,即通常所说的拷贝数.相对定量的目的是测定目的基因在两个或多个样本中的含量的相对比例,而不需要知道它们在每个样本中的拷贝数.举例来说,如果研究项目中包括处理过的和未经处理的对照样本,通常可以将未经处理的样本指定为基准,规定桥唤敬其目的基因浓度为 100%,将经处理的样本的定量结果除以对照样品的定量结果,就可以计算各个处理样本的基因含量相对于未处理样品的百分比.
绝对定量实验必须使用已知拷贝数的绝对标准品,必须做标准曲线.相对定量可以做标准曲线,也可以不做标准曲线.
相对定量实验有两种方法:标准曲线法和CT值比较法.如果使用标准曲线法,可以使用绝对标准品,也可以使用相对标准品,而且相对标准品在实验操作上更为简便易行.相对标准品是只知道样品中DNA或RNA的稀释比例而不需要知道其分子数目的标准品,典型的做法是将一个已知pg数的样品做一系列梯度稀释.
CT值比较法是利用CT值与起始DNA浓度的对数成反比的数学关系,来计算不同样本之敏慎间的相对百分比,其计算公式是
绝对定量链消的数据易于理解,但是绝对标准品的制备和测定其DNA含量比较困难.有许多商业性的标准品试剂盒供选购,可以解决这种困难.相对定量的标准品容易在实验室里自己制备,但是数据处理比较麻烦,对实验数据的解释有一定难度.
⑤ 高效液相色谱有几种定量方法,其中哪种是比较精确的定量方法
峰面积法、峰高法、归一法、外标法。峰面积法是比较精确的定量方法
⑥ qPCR检测,你需要知道这些
生物学划分为两个时代:PCR前时代和PCR后时代,这是《纽约时报》对穆利斯先生发明PCR技术的评价。1983年,Kary B. Mullis提出了PCR技术的构想, 1985年,他们在Science发表了迟蠢握相关的论文。论文由Mullis的同事Randall K. Saiki领衔发表,1988年Saiki等分离纯化了Taq DNA聚合酶,并将其应用于PCR反应,使PCR变得更加简单、易行和稳定,随后PCR技术迎来了蓬勃发展的时期。PCR根据其分析精度,大致经历了以下三个阶段:(I)终点PCR:定性分析(II)定量PCR:相对定量(III)数字PCR:绝对定量
早期PCR主要用于定性分析,根据反应终点产物的有或无检测靶标序列存在与否,这种PCR可以称为终点PCR,在基因鉴定、病原核酸检测等领域具有广泛应用。
1990年,Simmonds等就通过对终点产物的梯度稀释对HCV、HIV等病原体进行了粗略的拷贝数鉴定,这可能是最早的定量PCR研究。不过需要澄清一下,这里所说的定量PCR还不是指荧光定量PCR,那时还没有将荧光物质用于PCR产物的监控。直到1992年,罗氏公司的R Higuchi等在Nature发表论文,介绍了将溴化乙锭(EB)用于PCR产物动态监控的方法,这可能是最早的荧光定量PCR技术了。1996年,ABi公司公布了基于Taqman探针的qPCR技术。1997年,Wittwer等比较了(i)基于双链特异性染料SYBR Green I(ii)基于5’-核酸酶和双标探针(iii)基于Cy5的分子信标的qPCR的特点。这些研究为后来qPCR的广泛应用奠定了基础。
一般,人们习惯把qPCR分为相对定量和绝对定量,不过本质上来说,qPCR只能用于相对定量,绝对定量的实现往往需要借助“外力”。 PCR扩增是一种指数扩增,理想状态下,产物浓度与起始浓度存在如下关系:N T = N 0 ×2 n (N 0 代表起始浓度,N T 代表终点浓度,n代表循环数),对公式两边取以对数可得:log N T = logN 0 + n×log2(log代表以自然常数e为底的对数),如果我们把PCR终点的判断信号固定成一个统一的值(即qPCR中的荧光阈值),那么循环数与起始浓度的对数就成了线性关系,这就是qPCR相对定量的基本原理。不过有两个因素:(1)人的肉眼无法准确的判断PCR终点信号,于是出现了特殊的设备—荧光PCR仪;(2)不同的靶标基因的扩增效率不同,因此无法直接比较,因此催生了 ∆∆ Ct法。
真正的绝对定量PCR称为数字PCR(dPCR,1999年Kinzler等首次提出数字PCR的概念),它是在终点PCR和极限稀释的基础上通过泊松分布计算得出拷贝数的绝对定量方法。在Simmonds等的研究中,他们通过将DNA分子稀释到单拷贝,然后根据PCR的终点信号和泊松分布规律,计算了靶标基因的分子数目,不过他们没有进一步发展该技术,很长一段时间内该技术都是以分子计数的特点应用的。dPCR一方面因受到qPCR的长期压制,另一方面受到检测仪器的限制,直到2006年以后才逐渐显示出技术复苏的景象。
1993年,Zachar等在《核酸研究》上介绍了利用PCR对靶标基因进行相对定量的数学原理;2001年,Livak KJ等介绍了2 - ∆∆ Ct 法的推导过程,局限性及应用。
当然这些原理很简单,即使不看论文也很容易理解。因为PCR的指数扩增,当我们把终点的判断标准固定时,起始模板量高的样本最先到达,起始模板量低码庆的样本消耗更多的循环数,并且每相差一个循环,代表起始浓度相差2倍,即N1/N2 = 2 -(Ct1-Ct2) 。检测不同样本时, ∆ Ct可能受样本量差异的影响,因此引入了内参基因的校正。内参基因,也叫管家基因或者看家基因,一般认为他们在生物体不同时空组织中保持恒定表达,那么两个样本内参基因的 ∆ Ct就代表了样本量的差异,靶标基因的 ∆ Ct – 内参基因的 ∆ Ct即为靶标基因的真实表达量差异,这就是2 - ∆∆ Ct 法。
但档皮是有几个问题需要注意:(1)PCR并非全程都是指数增长期,比较必须在对数扩增期进行(2)一般默认对数增长期扩增效率是100%,这并不严谨,尤其是一些扩增困难的模板,效率可能与100%差异很大,纵向分析某基因的表达量(如基因A在不同生产阶段/不同组织的表达量)时,仍使用2 - ∆∆ Ct 可能并不太准确(3)不同靶标基因的扩增效率是不同的,因此横向比较不同靶标基因时,可能造成较大的误差。
鉴于此,我们在设计引物时,应该尽可能使靶标的长度、GC%、Tm保持接近,从而保证相近的扩增效率。 PrimerBank 和 qPrimerDB 分别是国外和国内比较优秀的qPCR引物检索网站,收录了大量物种的qPCR引物数据,具有一定参考价值。此外,Pfaffl等(2001),Rao(2013)等对2 - ∆∆ Ct 法进行了一些校正,采用的方法主要就是通过对同一模板梯度稀释进行扩增效率校正,具有一定参考意义。
qPCR绝对定量有两种方法:(1)先获得一个拷贝数已知的参照基因,再获得靶标基因与该参照的比值,然后根据已知值获得检测样本的确切数目,从这个角度看绝对定量就是借助了“拷贝数已知”这一外力的相对定量。1990年,Gilliland等就描述了这一原理。(2)Simmonds等报道的方法,将DNA模板做极限稀释,一直到PCR体系中仅含有一个模板分子,此时只需要乘以稀释倍数就可以得到样本中靶标基因的拷贝数。这一方法是dPCR的技术原型,在实际操作中很有困难,首先需要很多稀释梯度,其次普通的10-20uL体系中仅含有一个模板分子经常很难扩增成功。
绝对定量最广泛的应用是分子计数,如RNA分子数的精确测定,DNA基因组上的基因拷贝数鉴定等。Southern杂交法是外源基因拷贝数鉴定使用最广泛的方法,但随着qPCR技术的不断发展,基于qPCR绝对定量的拷贝数鉴定的报道逐渐增多,并且大量研究表明qPCR方法与Southern杂交得到的结果基本一致甚至更加精确。Song等(2002)利用qRT-PCR估计了转基因玉米愈伤组织和植物中的转基因拷贝数,该研究还使用Southern杂交重新测量了玉米愈伤组织和植物中的“精确”转基因拷贝数,结果qRT-PCR的测量结果与“精确”结果有较高相关性,因此,他们认为 qRT-PCR可以作为一种评估转基因玉米拷贝数的有效手段。
拷贝数鉴定的关键是获得一个拷贝数已知的标准品,质粒容易提取和纯化,因此常用于构建绝对定量的标准品。把携带靶标基因的重组质粒提纯到极高的纯度,精确测定其核酸浓度,根据公式:N = 6.02 × 10 23 (/mol) × M DNA (g) / (DNA length(bp) × 650(g/mol/bp)) 即可计算出标准品拷贝数,式中N代表分子数目,M DNA 代表质粒重量。以此标准品绘制logN与Ct的标准曲线,然后根据靶标基因的Ct值即可反推出靶标基因的精确个数。同时我们要从基因组上选择一个基因拷贝时已知的参照基因,按同样方式绘制标准曲线、进行分子计数,然后测定统一样本中把靶标基因与参照基因的分子数,带入上述公式即可得到靶标基因的实际拷贝数。一般,应该选择基因组上拷贝数较低,物种内保守性极高的基因作为参照基因。
拷贝数鉴定具有多种形式,双标准曲线并不是必需的,如果能够确认靶标基因与参照基因的扩增效率都接近100%,也可使用2 - ∆∆ Ct 法测量靶标基因的拷贝数,林维石等(2013)就通过该方法得到了与Southern杂交一致的拷贝数鉴定结果。
基因分型的方法有很多,Landegren等(1998)在报道中综述了多种用于基因分型的技术方法,其中发展到现在应用最为广泛的就是qPCR法和测序法。测序法最为准确,并且能够发现新基因型,是基因分型或SNP检测的金标准,但它比较慢,且操作比较繁琐。qPCR检测操作简单且速度极快,目前有十分广泛的应用。
qPCR法基因分型的基本原理是:3’-末端不匹配的引物无法正常扩增靶标基因。1989年,Wu等和Newton等先后报道了ASPCR法和法用于检测等位基因,这种方法容易理解,假设已知SNP位点为A/T,如果3’-A引物PCR产物产生终点信号可判断为A基因型,3’-T引物产生终点信号为T基因型,两种引物均产生信号即为杂合型。1995年,Livak等报道了利用不同荧光标记的探针检测SNP的方法,这种方法中,分别针对两种基因型设计两条不同荧光标记的探针,并设置纯和基因型的对照,随着PCR扩增如果荧光信号靠近A参照代表A基因型,靠近B参照代表B基因型,如果位于A和B之间则为杂合型(如下图)。
2003年,Papp等报道了一种基于高分辨率溶解曲线的SNP分型方法,这种方法也是基于3’-末端不匹配的引物,A基因型设计正常长度的引物,B基因型则在引物5’端添加10-15bp的高GC序列,经过PCR扩增后,不同基因型产物的Tm就会发生变化,依赖于qPCR仪的高分辨率溶解曲线,可以快速区分基因型。
1995年以后,qPCR相关的研究论文数量呈指数式增长,成为分子生物学最热门的领域之一。近年来,随着分子诊断行业的崛起,qPCR在医疗领域发挥着越来越重要的作用。qPCR在快速发展的同时,也产生了一些问题,如判断标准不一致,检测精确度没有统一标准,RNA检测假阳性较严重等。2009年,多个科研院所及医疗单位合作发布了qPCR的 MIQE指南 ,该指南规范了qPCR的常用术语,如Ct应称为Cq,RT-PCR应写作RT-qPCR等,并对分析的敏感性、特异性、精度等进行了规范性要求,此外指南还对样本处理、核酸提取、逆转录、qPCR甚至数据分析都作了详尽的规范。该指南由9部分组成,共85个参数,以确保以qPCR实验的实用性、准确性、正确性和可重复性。虽然该指南已经有些年份,但遵守这些规范能够让你的研究更易重复,也有助于审稿人和编辑快速评估你的稿件。
注:指南的内容和附表可以在这里获取: http://rdml.org/miqe.html
参考文献
[1] Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350‐1354. doi:10.1126/science.2999980
[2] Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487‐491. doi:10.1126/science.2448875
[3] Simmonds P, Balfe P, Peutherer JF, et al. Human immunodeficiency virus-infected indivials contain provirus in small numbers of peripheral mononuclear cells and at low numbers. J Virol. 1990;64(2):864‐872.
[4] Simmonds P, Zhang LQ, Watson HG, et al. Hepatitis C quantification and sequencing in blood procts, haemophiliacs, and drug users. Lancet. 1990;336(8729):1469‐1472. doi:10.1016/0140-6736(90)93179-s
[5] Higuchi, R et al. “Simultaneous amplification and detection of specific DNA sequences.” Bio/technology (Nature Publishing Company) vol. 10,4 (1992): 413-7. doi:10.1038/nbt0492-413
[6] Wittwer CT, Ririe KM, Andrew RV, et al. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques. 1997;22(1):176‐181. doi:10.2144/97221pf02
[7] Zachar V, Thomas RA, Goustin AS. Absolute quantification of target DNA: a simple competitive PCR for efficient analysis of multiple samples. Nucleic Acids Res. 1993;21(8):2017‐2018. doi:10.1093/nar/21.8.2017
[8] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402‐408. doi:10.1006/meth.2001.1262
[9] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi:10.1093/nar/29.9.e45
[10] Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3(3):71‐85.
[11] Gilliland G, Perrin S, Blanchard K, Bunn HF. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87(7):2725‐2729. doi:10.1073/pnas.87.7.2725
[12] Song P, Cai C, Skokut M, et al. Quantitative real-time PCR as a screening tool for estimating transgene number in WHISKERS™-derived transgenic maize[J]. Plant Cell Reports, 2002, 20(10): 948-954. doi: 10.1007/s00299-001-0432-x
[13] 林维石等:利用实时荧光定量比较Ct法检测转基因小鼠外源基因拷贝数[J]. 生物技术通讯, 2013, 4(24): 497-500. doi: 10.3969/j.issn.1009-0002.2013.04.012
[14] Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 1989;86(8):2757‐2760. doi:10.1073/pnas.86.8.2757
[15] Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503‐2516. doi:10.1093/nar/17.7.2503
[16] Huang MM, Arnheim N, Goodman MF. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992;20(17):4567‐4573. doi:10.1093/nar/20.17.4567
[17] Livak KJ, Marmaro J, Todd JA. Towards fully automated genome-wide polymorphism screening. Nat Genet. 1995;9(4):341‐342. doi:10.1038/ng0495-341
[18] Landegren U, Nilsson M, Kwok P Y. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis[J]. Genome research, 1998, 8(8): 769-776. doi:10.1101/gr.8.8.769
[19] Papp AC, Pinsonneault JK, Cooke G, Sadée W. Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques. 2003;34(5):1068‐1072. doi:10.2144/03345dd03
⑦ 相对定量和绝对定量有什么区别
一、目的不同
1、相对定量:是测定目的基因在两个或多个样本中的猛历改含量的相对比例,而不需要知道它们在每个样本中的拷贝数。
2、绝对定量PCR:是一种在DNA扩增反应中,以荧光染剂侦测每次聚合酶链锁反应(PCR)循环后产物总量的方法技术
二、原枝判理不同
1、相对定量:利用CT值与起始DNA浓度的对烂蠢数成反比的数学关系,来计算不同样本之间的相对百分比。
2、绝对定量PCR:是利用荧光信号的变化,实时检测PCR扩增反应中每次循环扩增产物量的变化,通过循环阈值和标准曲线的分析对标本中起始模板拷贝数进行定量分析。
三、标准曲线不同
1、相对定量:可以做标准曲线,也可以不做标准曲线。
2、绝对定量PCR:实验必须使用已知拷贝数的绝对标准品,必须做标准曲线。
⑧ 定量研究方法主要包括什么方法
1、调查法
调查法是一种古老的研究方法,是指为了达到设想的目的,制定某一计划全面或比较全面地收集研究对象的某一方面情况的各种材料,并作出分析、综合,得到某一结论的研究方法。
2、相关法
相关法是指经由使用相关系数而探求变量间关系的研究方法。相关研究的主要目的,是在确定变量之间关系的程度与方向。变量关系的程度,有完全相关、高相关、中等相关、低相关或零相关等;而变量关系的方向有正相关和负相关等。
3、实验法
实验法是指操纵一个或一个以上的变量,并且控制研究环境,借此衡量自变量与因变量间的因果关系的研究方法。实验法有两种,一种是自然实验法,另一种是实验室实验法。
(8)绝对定量的检测方法有哪些扩展阅读:
定量研究方法的测定尺度及特征:
1、名义尺度
所使用的数值,用于表现它是否属于同一个人或物。
2、顺序尺度
所使用的数值的大小,是与研究对象的特定顺序相对应的。
3、间距尺度
所使用的数值,不仅表示测定对象所具有的量的多少,还表示它们大小的程度即间隔的大小。
4、比例尺度
其意义是绝对的,即它有着含义为“无”量的原点0。长度、重量、时间等都是比例尺度测定的范围。比例尺度测定值的差和比都是可以比较的。
参考资料来源:网络-定量研究
⑨ 定量检测是用得什么检测方法
不能一概而论的,要看具体是什么物质。
如果是金属离子,通常可以用络合滴定法、比浊法、沉淀法和原子吸收光谱法等。
如果是低沸点有机物,则是气相色谱法,可以是归一法、内标法或者外标法定量。
如果是分子稍大的有机物,可以用液相色谱法,同样是归一法、内标法或者外标法定量。