㈠ 数学解决问题的技巧和方法
数学解决问题的技巧和方法:形象思维方法、抽象思维方法、排除法。
1、形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。
它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。
3、排除法。利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
㈡ 配套问题公式是什么
配套问题的公式:
1、工作量=工作效率×工作时间,期待于雇员或分配给雇员的多少工作或工作时间。
2、路程=速度×时间,路程还用于对两地距离的衡量工具,路程越远,两地的交往就越有障碍。
3、总路程=两者所走的路程之和,船本身的速度,也就是在静水中单位时间里所走过的笑掘路程。
方法技巧:
1、设:按照题意设出未知数.一般地,所设的未知数为工人人数分弊升局配。
2、列:列式表示两类产品生产总量。
3、求:求出租让配套关系中出示的具体数据的最小公倍数。
4、等:根据最小公倍数与产品配套关系,分配相乘,写出等式。
㈢ 数学解决问题的方法有哪些
1、数形结合法,将问题转化成图形进行解决,常用在代数中的应用题中。
2、公式法,将公式直接运用到问题中,常用在代数问题中,解决该类问题必须记好数学公式。
3、逆推倒想法,由问题的结论推理到问题中的条件,常用在几何问题中。解决该类问题必须掌握好几何中的定义、公理、定理和推论等。
㈣ 配套问题技巧
1、配套问题,是用一元一次方程解应用题中一个重要的部分,配套问题的关键在于,利用配套问题中物品之间具有的数量关系作为依据,准确找出实际问题中的等量关系来解决问题。在实际问题中,大家常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等。
2、解决这类问题的方法如下:
抓住配套关系。
设出未知数。
根据配套关系列出方程。
通过解方程来解决问题。
这是我以前总结的,给你看看吧。 解应用题的一般步骤: 解应用题的一般步骤可以归结为:“审、设、列、解、验、答” . 1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意. 2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目). 3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程. 4、“解”就是解方程,求出未知数的值. 5、“验”就是验解,即检验方程的解能否保证实际问题有意义. 6、“答”就是写出答案(包括单位名称). 应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等. 几种常见类型和等量关系如下: 1、行程问题: 基本量之间的关系:路程=速度×时间,即:. 常见等量关系: (1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程. (2)追及问题(设甲速度快): ①同时不同地: 甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程. ②同地不同时: 甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程. 2、工程问题: 基本量之间的关系:工作量=工作效率×工作时间. 常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量. 3、增长率问题: 基本量之间的关系:现产量=原产量×(1+增长率). 4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度. 5、水中航行问题: 基本量之间的关系:顺流速度=船在静水中速度+水流速度; 逆流速度=船在静水中速度-水流速度. 6、市场经济问题: 基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价; 利息=本金×利率×期数;本息和=本金+本金×利率×期数
㈤ 中考数学产品配套问题的答题技巧
中考数学产品配套问题的答题技巧
一、设:按照题意设出未知数.一般地,所设的未知数为工人人数分配;
二、列:列式表示两类产品生产总量;
三、求:求出配套关系中出示的'具体数据的最小公倍数;
四、等:根据最小公倍数与产品配套关系,分配相乘,写出等式.
下面我就针对具体的例题来讲解用最小公倍数法及四步教学巧解产品配套问题.
例1机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
注:在解决上述问题前,我们必须要清楚产品配套关系这一特定问题中的特定概念:如上述问题中出示的2个大齿轮与3个小齿轮配成一套即为该问题中的产品配套关系.
分 析:
第一步:设:安排x名工人加工大齿轮,则安排(85-x)名工人加工小齿轮才能使每天加工的大小齿轮刚好配套;
第二步:列:x名工人每天共生产大齿轮16x个,(85-x)名工人每天共加工小齿轮10(85-x)个;
第三步:求:该问题中的配套关系是2个大齿轮与3个小齿轮配成一套,它们的最小公倍数是:2
第四步:等:因为x名工人每天共生产大齿轮16x,(85-x)名工人每天共加工小齿轮10(85-x)个,则分配相乘为:
;㈥ 数学配套问题如何解答
设能山蠢配成x张桌子,则桌面有x张,桌腿4x条
制作一张桌面要费木材1/20立方米,同理桌腿要1/400立方米
故可列方程:x*1/祥搜20+4x*1/400=12
解得x=200
即谨唯历可以配成200张桌子
㈦ 初一数学方程的配套问题思路是什么
1读:读题或者审题。遇到列方程应用题的时候,一般情况下,我要求学生至少读两遍题:学生在读第一遍题的时候就要给应用题定位:是属于行程类、还是工程类或是销售类应用题,或者说是其他什么类型的应用题;要明确已知什么,未知什么以及之间的相互关系,并抽象出数学问题;在读第二遍题的时候,学生要逐字逐句的阅读和理解,必要时可做一些记录,直到完全理解题目中给出的所有已知条件。
好多同学一看到应用题就产生畏难情绪,在读题时怕浪费时间就随意看两眼,造成读题不仔细,理解不到位,导致应用题分析不够,从而无法下手将应用题解答出来。
2设:设恰当的未知数。读完题,并明确题目的类型和已知未知条件之间的相互关系后,
就要根据题意设出恰当的未知数,可以设直接未知数,有时候根据题意也需要设间接未知数。
3列:列数学关系式。根据题意设出恰当的未知数后,找出表示应用题全部含义的相等关系,列出数学关系式,应用题就变成了纯粹的数学题了,要注意的是所列的方程应满足等号两边的量要相等,方程两边的代数式的单位要相同,同时一定要根据题目的需要写出未知量的范围,这是很重要的一个环节。接着就是利用所学的数学知识解数学题,要注意解题过程必须完整。
4解:根据解方程的步骤,仔细、完整地解出方程的结果。要注意的是答案解答出来后要符合实际问题的要求,比如:人的个数、树的棵树、机器的台数等都必须为非负整数才符合实际情况。
5检验并答:方程解完后还要检验,然后明确地、完整地写出答案。
检验要做到:检验所求出的解既能使方程成立,又能使应用题有意义;最后还要作答,要将解数学题的结论回归到应用题上来,千万注意这是必不可少的一步。
㈧ 求教数学配套问题
解枝返:设分配x工人生产脖子上的丝巾,则(72-x)工人生产手上的丝巾, 于是,
1200*x *2= 1800*(72-x);
解之得:4x=3(72-x) ==> 4x=3*72-2x ==> 7x=3*72 ==> x= 216 / 7 = 31 (约等此数)(不一定非要得到整数结果)
72-31=41,
答:应分配31名迟改工人生产脖子上的丝巾猛旦饥,41名工人生产手上的丝巾。