⑴ 解析几何,求解
高中数学解析几何运算,很多同学突破不了,然而解析几何的题对高考的占比又很大。老师在这里总结一些解题技巧。
高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。
(2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点题目(含切线题目);
③与曲线有关的最(极)值题目;
④与曲线有关的几何证实(对称性或求猜没陵对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数目特征;
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。
(4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目;
②对痴光目(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的题目.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分穗戚析题目的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为困难,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们留意圆锥曲线的定义在解题中的应用,留意解析几何所研究的题目背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考查的重点要落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点察差题目有求曲线方程题目、参数的取值范围题目、最值题目、定值题目、直线过定点题目、对痴光目等,所以我们要把握这些题目的基本解法。
命题特别留意对思维严密性的考查,解题时需要留意考虑以下几个题目:
1、设曲线方程时看清焦点在哪条坐标轴上;留意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交题目留意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。假如前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型题目等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要留意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如?=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:假如已知M的坐标,按向量展开;假如未知M的坐标,按定比分点公式代进表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,留意圆锥曲线的性质的应用。
6、留意数形结合,特别留意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对痴规换的技巧,构造对称式用韦达定理代进的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系题目是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围题目、最值题目、定值题目、对痴光目等综合性题目也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何题目的难度有所降低,但还是一个综合性较强的题目,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证实直线PQ恒过一个定点。
高考命题虽说千变万化,但只要找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的温习。对待高考,我们应该采取正确的态度,再大胆猜测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,进步自己的解题能力.
一、高考温习建议:
本章内容是高考重点考查的内容,在每年的高考考试卷中占总分的15%左釉冬分值一直保持稳定,一般有2-3道客观题和一道解答题。选择题、填空题不仅重视基础知识和基本方法,而且具有一定的灵活性与综合性,难度以中档题居多,解答题注重考生对基本方法,数学思想的理解、把握和灵活运用,综合性强,难度较大,常作为把关题或压轴题,其重点是直线与圆锥曲线的位置关系,求曲线方程,关于圆锥曲线的最值题目。考查数形结合、等价转换、分类讨论、函数与方程、逻辑推理诸方面的能力,对思维能力、思维方法的要求较高。
近几年,解析几何考查的热门有以下几个
――求曲线方程或点的轨迹
――求参数的取值范围
――求值域或最值
――直线与圆锥曲线的位置关系
以上几个题目往往是相互交叉的,例如求轨迹方程时就要考虑参数的范围,而参数范围题目或者最值题目,又要结合直线与圆锥曲线关系进行。
总结近几年的高考试题,温习时应留意以下题目:
1、重点把握椭圆、双曲线、抛物线的定义或性质
这是由于椭圆、双曲线、抛物线的定义和性质是本章的基石,高考所考的题目都要涉及到这些内容,要善于多角度、多层次不断巩固强化三基,努力促进知识的深化、升华。
2、重视求曲线的方程或曲线的轨迹
曲线的方程或轨迹题目往往是高考解答题的命题对象,而且难度较大,所以要把握求曲线的方程或曲线的轨迹的一般方法:定义法、直接法、待定系数法、代进法(中间变量法)、相关点法等,还应留意与向量、三角等知知趣结合。
3、加强直线与圆锥曲线的位置关系题目的温习
由于直线与圆锥曲线的位置关系一直为高考的热门,这类题目常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直题目,因此分析题目时利用数形结合思想和设而不求法与弦长公式及韦达定理联系往解决题目,这样就加强了对数学各种能力的考查,其中着力抓好“运算关”,增强抽象运算与变形能力。解析几何的解题思路轻易分析出来,往往由于运算不过关中途而废,在学习过程中,应当通过解题,寻求公道运算方案,以及简化运算的基本途径和方法,亲身经历运算困难的发生与克服困难的完整过程,增强解决复杂题目的信心。
4、重视对数学思想、方法进行回纳提炼,达到优化解题思路,简化解题过程的目的。
用好方程思想。解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长题目利用韦达定理进行整体处理,就可简化解题运算量。
用好函数思想,把握坐标法。
二、知识梳理
●求曲线方程或点的轨迹
求曲线的轨迹方程是解析几何的基本题目之一,是高考中的一个热门和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生的创新意识为突破口,注重考查学生的逻辑思维能力、运算能力、分析题目和解决题目的能力,而轨迹方程这一热门,则能很好地反映学生在这些方面能力的把握程度。
下面先容几种常用的方法
(1) 直接法:动点满足的几何条件本身就是一些几何量的等量关系,我们只需把这种关系“翻译”成含x、粉底液哪个牌子好y的等式就得到曲线轨迹方程。
(2) 定义法:其动点的轨迹符合某一基本轨迹的定义,则可根据定义直接求出动点的轨迹方程。
(3) 几何法:若所求的轨迹满足某些几何性质(如线段中垂线、角平分线性质等),可以用几何法,列出几何式,再代进点的坐标较简单。
(4) 相关点法(代进法):有些题目中,某动点满足的条件不便用等式列出,但动点是随着另一动点(称为相关点)而运动的,假如相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,再把相关点代进其所满足的方程,即可求得动点的轨迹方程。
(5) 参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现这个动点的运动经常受到另一个变量(角度、斜率、比值、截距)等的制约,即动点坐标(x、y)中的x、y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法。消往参数,即可得到轨迹普通方程。选定参变量要特别留意它的取值范围对动点坐标取值范围的影响。
(6) 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹题目,这类题目常通过解方程组得出交点(含参数)的坐标,再消往参数求出所求轨迹方程,该法经常与参数法并用。
●求参数范围题目
在解析几何题目中,常用到参数来刻划点和曲线的运动和变化,对于参变量范围的讨论,则需要用到变与不变的相互转化,需要用函数和变量往思考,因此要用函数和方程的思想作指导,利用已知变量的取值范围以及方程的根的状况求出参数的取值范围。
例1、已知椭圆C: 试确定m的范围,使得对于直线l: y = 4x+m 椭圆上有不同的两点关于直线 l 对称。
例2、已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M (m , 0 ) 到直线AP的间隔为1,
(1)若直线AP的斜率为k ,且 ,求实数 m 的取值范围
(2)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程
●值域和最值题目
与解析几何有关的函数的值域或弦长、面积等的最大值、最小值题目是解析几何与函数的综合题目,需要以函数为工具来处理。
解析几何中的最值题目,一般是根据条件列出所求目标――函数的关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大值或最小值。另外,还可借助图形,利用数形结正当求最值。
例1、如图,已知抛物线 y2 = 4x 的顶点为O,点A 的坐标为(5,0),倾斜角为π/4的直线 l 与线段OA相交(不过O点或A点),且交抛物线于M、N两点,求△AMN面积最大时直线的方程,并求△AMN的最大面积。
●直线与圆锥曲线关系题目
1、直线与圆锥曲线的位置关系题目,从代数角度转化为一个方程组实解个数研究(如能数形结合,可借助图形的几何性质则较为简便)。即判定直线与圆锥曲线C的位置关系时,可将直线方程带进曲线C的方程,消往y(有时消往x更方便),得到一个关于x的一元方程 ax2 + bx + c = 0
当a=0时,这是一个一次方程,若方程有解,则 l 与C相交,此时只有一个公共点。若C为双曲线,则 l 平行与双曲线的渐进线;若C为抛物线,则 l 平行与抛物线的对称轴。所以当直线与双曲线、抛物线只有一个公共点时,直线和双曲线、抛物线可能相交,也可能相切。
当 a≠0 时,若Δ>0 l与C相交
Δ=0 l与C相切
Δ<0 l与C相离
2、涉及圆锥曲线的弦长,一般用弦长公式结合韦达定理求解。
解决弦中点有两种常用办法:一是利用韦达定理及中点坐标公式;二是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系(点差法)
中点弦题目就是当直线与圆锥曲线相交时,得到一条显冬进一步研究弦的中点的题目. 中点弦题目是解析几何中的重点和热门题目,在高考试题中经常出现. 解决圆锥曲线的中点弦题目,“点差法”是一个行之有效的方法,“点差法”顾名思义是代点作差的办法. 其步骤可扼要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代进圆锥曲线方程相减;③得到弦的中点坐标与所在直线的斜率的关系,从而求出直线的方程;④ 作简
要的检验. 本文试图通过对一道高考试题解法的探讨,谈点个人见解.
一、高考试题
椭圆C: + = 1(a> b > 0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=, |PF2| = .
(1) 求椭圆C的方程;
(2) 若直线l过圆x2 + y2 + 4x - 2y = 0 的圆心M,交椭圆C于A,B两点,窃读,B关于点M对称,求直线l的方程.
二、解题思路
第(1)题的解法不再赘述,答案是:+ = 1,在此基础上研究第(2)题的解法.
1. 运用方程组的思路
设A(x1,y1),B(x2,y2),已知圆的方程为(x + 2)2 + (y - 1)2 = 5,所以圆心M的坐标为(-2,1),从而可设直线l的方程为:y= k(x+ 2)+1.
∴y= k(x+ 2)+ 1,+=1.消y得
(4 + 9k2)x2 + (36k2 + 18k)x + 36k2 + 36k - 27 = 0.
∵ A,B关于点M对称,
∴ = - = -2,解得 k =.
∴ 直线l的方程为:8x - 9y + 25 = 0.
2. 运用“点差法”的思路
已知圆的方程为(x+ 2)2+ (y- 1)2= 5,所以圆心M的坐标为(-2,1).
设A(x1,y1),B(x2,y2),由题意x1≠x2且
+ = 1(1)+= 1(2)
由(1)- (2)得
+ = 0(3)
由于A,B关于点M对称,所以x1 + x2 = -4,y1 + y2 = 2,代进(3)得 k1 = =,所以,直线l的方程为:8x - 9y + 25 = 0. 经检验,所求直线方程符合题意.
三、对两种思路的熟悉
思路1运算较复杂,尤其是消元得到方程这一步,很多学生是不能顺利过关的;思路2运算较简洁,学生易把握. 对于两种思路都必须分析到:直线l经过圆心,而且圆心是弦的中点. 这些方法在考题中经常有所涉及.
四、对“点差法”的思考
1. “点差法”使用条件的反思
“点差法”使用起来较为简洁,那么使用“点差法”的条件是什么?
假设一条直线与曲线mx2 + ny2 = 1(n,m是不为零的常数,且不同时为负数)相交于A,B两点,设A(x1,x2),B(x2,y2),则mx12 + ny12= 1,mx22 + ny22 = 1, 两式相减有:m(x1 - x2)(x1 + x2) = -n(y1 - y2)(y1 + y2). 其中x1+x2与y1 + y2和线段AB的中点坐标有关; 为AB的斜率. 由此可见,知道其中一个可以求出另外一个,意思是说:要用“点差法”,需知道AB的中点和AB的斜率之一才可求另一个. 然后进行扼要的检验.
2. 先容一种处理中点弦题目时的巧妙的独到的解法
例题 已知双曲线x2 - = 1,问是否存在直线l,使得M(1,1)为直线l被双曲线所截弦AB的中点.若存在,求出直线l的方程;若不存在,请说明理由.
由题意得M(1,1)为显读B的中点,可设A(1+ s,1+ t),B(1- s,1- t),(s,t∈T订,由于A,B,M不重合可知, s,t不全为零. 又点A,B在双曲线x2-= 1上,将点的坐标代进方程得
(1+ s)2-= 1(1)(1- s)2-= 1(2)
(1)+ (2) 可得s2= t2 (3)
(1)- (2) 可得t = 2s (4)
将(4)代进(3)可得s= 0,t= 0,不可能,故不存在这样的直线.
这里我们回纳一下解题思路:
已知直线l与圆锥曲线:ax2 + by2 = 1(a,b使得方程为圆锥曲线)相交于A,B两点,设中点为M(m,n),求直线l方程.
解题思路 设A(m+ s,n+ t),B(m - s,n - t), (s,t∈T订,由于A,B,M不重合可知,s,t不全为零. 又点A,B在双曲线ax2 + by2 = 1上,将点的坐标代进方程得a(m + s)2- b(n+ t)2= 1, a(m-s)2 - b(n- t)2= 1.解得:ams = bnt,am2 +s2 = bn2 + t2. (由于这里全是字母运算,表达式复杂,不再求出所有的表达式的具体形式,只是谈一下思路)进一步解出s,t的值,从而知道A,B的坐标,运用两点式求出直线l的方程。
⑵ 韦达定理来解决中点弦
对方程 ax^2+bx+c=0 a不为0 且指键或唯伍b^2-4ac>0
有亮让 x1+x2= - b/a x1 x x2 =c/a
⑶ 高中数学圆锥曲线解题技巧
解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。
1.充分利用几何图形的策略
解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。
例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求m的值。
2.充分利用韦达定理的策略
我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OP⊥OQ,|PQ|=,求此椭圆方程。
3.充分利用曲线方程的策略
例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。
4.充分利用椭圆的参数方程的策略
椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。这也就是我们常说的三角代换法。
例:P为椭圆+=1上一动点,A为长轴的右端点,B为短轴的上端瞎庆点,求四边形OAPB面积的最大值及此时点P的坐标。
5.线段长的几种简便计算策略
(1)充分利用现成结果,减少运算过程。
求直线与圆锥曲线相交的弦AB长:把直线方程y=kx+b代入圆锥曲线方程中,得到型如ax+bx+c=0的方程,方兆枯程的两根设为x,x,判别式为△,则|AB|=•|x-x|=•,若直接用结论,能减少配方、开方等运算过程。
例:求直线x-y+1=0被椭圆x+4y=16所截得的线段AB的长。
(2)结合图形的特殊位置关系,减少运算。
在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
例:F、F是椭圆+=1的两个焦点,AB是经过F的弦,若|AB|=8,求|FA|+|FB|的值。
(3)利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。
例:点A(3,2)为定点,点F是抛物线y=4x的焦点,点P在抛物线y=4x上移动,若|PA|+|PF|取得最小值,求点P的坐标。
1.中点弦问题
具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x,y),(x,y),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例:给定双曲线x-=1,过A(2,1)的直线与双曲线交于两点P和P,求线段PP的中点P的轨迹方程。
2.焦点三角形问题
椭圆或双曲线上一点P,与两个焦点F、F构成的三角形问题,常用正、余弦定理。
例:设P(x,y)为椭圆+=1上任一点,F(-c,0),F(c,0)为焦点,∠PFF=α,∠PFF=β。
(1)求证:离心率e=;
(2)求|PF|+|PF|的最值。
3.直线与圆锥曲线位置关系问题
直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。
例:抛物线方程y=p(x+1)(p>0),直线x+y=t与x轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点。
(2)设直线与抛物线的交点为A、B,且OA⊥OB,求p关于t的函数f(t)的表达式。
族神洞4.圆锥曲线的有关最值问题
圆锥曲线中的有关最值问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图像性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。下题中的(1),可先设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2),首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即“最值问题,函数思想”。
例:已知抛物线y=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|≤2p,(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。
5.求曲线的方程问题
(1)曲线的形状已知,这类问题一般可用待定系数法解决。
例:已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。
(2)曲线的形状未知,求轨迹方程。
例:已知直角坐标平面上点Q(2,0)和圆C:x+y=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它是什么曲线。
6.存在两点关于直线对称问题
在曲线上两点关于某直线对称问题,可按如下方法解题:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。当然也可利用韦达定理并结合判别式来解决。
例:已知椭圆C的方程+=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于直线对称。
7.两线段垂直问题
圆锥曲线两焦半径互相垂直问题,常用k•k==-1来处理或用向量的坐标运算来处理。
⑷ 椭圆的中点弦问题,有俩个办法一个是根与系数关系法,二个是点差法,想问的是第一种根与系数关系法中
先消去谁要考虑两个方面:首先是解题的直接需要,比如运用弦长公式时;二个就是运算的简便性,因为直线方程多为y=kx+b的形式,而圆锥曲线是二次方程,所以通常用x代替y,运算起来比较简单。当然蠢碰,如果考虑运算简便先消去的培陆是y,而我需要的却是x,怎么办?其实直线方程y=kx+b就给了一个线性的转换条件:因为两点即在椭圆上同时也在直线上,那么两点的坐标都满足直线方程,于是有y1=kx1+b,y2=kx2+b,两式相加不就有了y1+y2=k(x1+x2)+2b吗?两式相乘不就有了y1y2=k^2x1x2+k(x1+x2)+b^2吗?所以我认为先消去谁都无所谓,只要运带中谈算简便!
⑸ 关于参数方程的中点弦问题 急 要讲清楚
最基本的就是联立
直线方程和曲线方程,
然后可以得到
联立方程
x1+x2的值,根搭悉宏据此可计算y1+y2的值。
然后就可得到弦中点的坐标
x=(x1+x2)/2.
y=(y1+y2)/2
然后再求相关值,比如说斜率k的表达式,再带入。就可以把弦中点的轨迹方程求出。
绝大多数的圆锥曲线和直线题都可以这样解
例如:已知双曲线x^2-y^2/2=1
(1)求以点a(2,1)为中点的弦所在直线l的方程
(2)求过点a(2,1)的弦的中点m的轨迹方程
(1)设过a点的直线方程为y-1=k(x-2)
联立双曲线x^2-y^2/2=1与直线
得(1-k^2/2)x^2+(2k^2-k)x+2k-2k^2-3/2=0
x(a)+x(b)=(k-2k^2)/(1-k^2/2)=2*2(以a为中点)
所以k=4,即直线知册方程为y=4x-7
(2)设弦的中点为(x,y)
则设过a点陆源的直线方程为y-1=k(x-2)
联立双曲线x^2-y^2/2=1与直线
得(1-k^2/2)x^2+(2k^2-k)x+2k-2k^2-3/2=0
x(a)+x(b)=(k-2k^2)/(1-k^2/2)=2x
y(a)+y(b)=(4-8k)/(2-k^2)=2y
故y=(4x^2-8x)/(3x+1)
看完此题应该能区分了吧?
⑹ 圆锥曲线的解题方法有哪些
轨迹问题、中点弦问题、垂直类问题等等,不要怕算。【知识结构】
【命题趋势分析】
从近三年高考情况看,圆锥曲线的定义、方程和性质仍是高考考查的重点内容,三年平均占分20分,约为全卷分值的13.3%,在题型上一般安排选择、填空、解答各一道,分别考查三种不同的曲线,而直线与圆锥曲线的位置关系又是考查的重要方面。
例1 (2002年江苏卷理科第13题)椭圆 的一个焦点是(0,2),则k________________________________________。
分析 本题主要考查椭圆的标准方程,先将其化为标准形式,然后求解。
解 椭圆方程即 ∴ ,∴由 解得k=1。
点评 由焦点在y轴上,其标准方程应化为 的形式,若此题变化为:已知曲线 的焦距为4,则k_____________________________________。
则应分两种情况讨论:(1)若为椭圆,则k=1;(2)若为双曲线,方程即为
∴ ,由 ,由 ,得 。
例2 (2001年全国卷理科第14题)双曲线 的两个焦点为 ,点P在双曲线上,若 ,则点P到x轴的距离为_________________________________。
分析 本题主要考查双曲线的定义,从“形”的角度看,只需求出 斜边 上的高,可用第一定义求解;从“数”的角度看,只需求出点P的纵坐标 ,先利用第二定义即焦半径公式表示出 , ,由勾股定理求出 ,再代入双曲线方程即可求出 的值;由于点P在以 为直径的圆上,因此,解决本题一个最基本的方法,则是利用交迹法求出点P。
解法一 设 ,且由双曲线的对称性不妨设点P在第一象限,则m―n=2a―6 ①, ②,
②-① 得2mn=64,∵mn=32,作PQ⊥x轴于Q,则在 中, ,即点P到x轴的距离为 ,
解法二 设 ,由第二定义可得 , ,∵ ,
∴ ,
即 ,这里a=3 c=5 ,代入得 。
∴由双曲线方程得 ,∴ 。
解法三 设 ,∵
∴点P在以 为直径的圆上,即
①,又点P在双曲线上,
∴ ②,由①,②消去 ,得 ,∴ 。
点评 (1)由双曲线的对称性,可将点P设定在第一象限内,而不必考虑所有的情况。
(2)解题的目标意识很重要,例如在解法一中只需整体求出mn的值,而不必将m,n解出;在解法三中只需求 即可;
(3)在三种解法中,以解法三最简洁,因此,最基本的方法有时也是最有效的方法。
(4)如果将问题改为:当 为钝角时,点P的横坐标的取值范围是________________________________。
那么,可先求出使 时的点P的横坐标为 ,由图形直观及双曲线的范围可得 ,2000年高考理科第14题考查了椭圆中与此类似的问题。
例3 (2000年全国卷理科第11题)过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则 等于( )
A.2a B. C.4a D.
分析 此题主要考查抛物线的定义与标准方程,可利用焦半径公式来解决。
解 抛物线方程即 ,记 ,则F(0,m),而直线PQ的方程可设为x=k(y-m),代入抛物线方程 得
,
设 ,则
而 ,
于是, ,
。
故, 。
当k=0时,易证结论也成立,因而选C。
点评 (1)由于所给抛物线的焦点在y轴上,故其焦点是 ,焦半径公式是 ,而不能写成 。(2)解题中,令 以及将直线PQ的方程设为x=k(y-m),都是为了简化运算。(3)作为一道选择题,如此解法显然是不经济的,可以利用上节例5中的结论3直接得出结果,因此,记住一些重要结论,对提高解题效率无疑是有益的。(4)特例法也是解选择题的常用的解题方法,本题只需考虑PQ//x轴,即为通径的情况,可立即得出结果。
例4 (2001年全国卷理科第19题)设抛物线 的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC//x轴,证明直线AC经过坐标原点O。
分析 本小题主要考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力,证明三点共线,只须证明OC、OA两直线的斜率相等,也可利用抛物线的性质证明AC与x轴的交点N恰为EF的中点,从而N与O重合,证得结论。
解法一 易知焦点 ,设直线AB的方程是 ,代入抛物线方程得
设 ,则
,即 。
因BC//x轴,且C在准线1上,故点 ,且 ,从而 ,从而
, ,
于是, ,从而A、O、C三点共线,即直线AC经过原点O。
解法二 如图,设准线1交x轴于点E,AD⊥1于D,连AC交EF于点N,由AD//EF//BC,
得 ,即 ,①
,即 ,②
又由抛物线的性质可知,|AD|=|AF|,|BC|=|BF|,代入①②可得|EN|=|NF|,即N为EF的中点,于是N与点O重合,即直线AC经过原点O。
点评 (1)本例解法一利用曲线的方程研究曲线的性质,充分体现了用坐标法研究几何问题的基本思想,而解法二则充分利用了抛物线的几何性质及相似三角形中的有关知识。(2)在解法一中,直线AB方程的设法值得推崇,从思路分析看,若证 ,即证 ,将 代入后即证 ,即证 ,为此应通过直线AB的方程及抛物线方程 联立消去x得到关于y的一元二次方程,解法一中的这一设法,既回避了直线方程的变形过程使运算简单,同时也回避了当AB⊥x轴的情况的讨论,若将AB方程设为 ,则必须对k不存在的情况作出说明。(3)试验修订本(必修)《数学》第二册(上) 习题8.6第6题是:过抛物线焦点的一条直线与它交于两点P、Q,经过点P和抛物线顶点的直线交准线于点M,求证直线MQ平行于抛物线的对称轴,可见,这道高考题实际上是课本习题的一个逆命题,同学们在平时的学习中,对课本典型例题,习题要加强研究。
例5 (2002年江苏卷第20题)设A、B是双曲线 上的两点,点N(1,2)是线段AB的中点。
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
分析 本题主要考查直线、圆及双曲线的方程和性质,运算能力和综合运用所学知识解决问题的能力。求直线AB的方程,可以设出其点斜式,与双曲线方程联立消元,利用韦达定理及中点公式求出其斜率,由于涉及“中点弦”问题,亦可利用“设而不求”法解决。对于第(2)小题,根据图形特征,若四点共圆,则CD必为其直径,至少可有以下三种解题思路:(1)判断CD中点到四点是否等距;(2)判断是否有AC⊥AD;(3)判断A、B两点是否以CD为直径的圆上。
解 (1)解法一:设AB:y=k(x-1)+2代入 ,整理得
。①
设 ,则
,且
因N(1,2)是AB的中点,故 ,于是 ,解得k=1,从而所求直线AB的方程为y=x+1。
解法二:设 ,代入双曲线方程得
。
因N(1,2)为AB的中点,故 , ,将它们代入上式可得 ,从而 ,于是直线AB的方程为y=x+1。
(2)将k=1代入方程①得, ,解得 , 。
由y=x+1得, , ,即A(-1,0),B(3,4),而直线CD的方程是y―1=―(x―2),即y=3-x,代入双曲线方程并整理得 ②
设 ,则 , 。
解法一:设CD中点为 ,则 ,于是 ,即M(-3,6)。
因
故 。
又
即A.B.C.D四点与点M的距离相等,从而A、B、C、D四点共圆。
解法二:由 , 得, ,
,故
,即AC⊥AD。
由对称性可知,BC⊥BD,于是A、B、C、D四点共圆。
解法三:以CD为直径的圆的方程是
,即
。
将 , , , ,代入得
,即 。
因 ,
,
故A、B在以CD为直径的圆上,即A、B、C、D四点共圆。
点评 (1)处理直线与圆锥曲线相交问题时,要重视韦达定理的应用。(2)“设而不求”是解决“中点弦”问题常用的方法,通过“设而不求”可以建立弦所在直线的斜率与弦的中点坐标之间的关系,本题已知中点坐标,即可确定出直线的斜率。(3)判断四点共圆的方法很多,注意从多种不同的角度进行思考,锻炼思维的灵活性。
【典型热点考题】
1.探究
例6 设 分别是椭圆 的左、右焦点,试问:在椭圆上是否存在一点P,使得 ?为什么?
分析 根据点P满足的条件,探究是否能够将点P的坐标求出,若能,则存在;若不能,则不存在,求P点坐标,有以下两条思路:
思路一 设 ,用焦半径公式将 , 用 表示,由 ,探求 是否存在。
思路二 由 知,点P在以 为直径的圆上,只须考察该圆与椭圆是否存在公共点。
思考:画一个较为准确的图形,不难发现,圆 与椭圆 没有公共点,所以这样的点P是不存在的,关键是这个椭圆太“圆”了,由此引发我们思考:为使点P存在,椭圆应尽量“扁”一些,也即其离心率应该较大,于是我们可以去思考一个一般性的问题:
一般化:若椭圆 上存在一点P,使得 ,求离心率e的取值范围。
利用例6提供的两个思路均可得到 ,从而验证了我们的猜想。
再思考:考察点P从长轴端点 始沿椭圆运动至 的过程, 由0°逐渐增大后又逐渐减小为0°,猜想在某一位置必然取得最大值,试问:这个最大值是多少?又在何处取得?从椭圆的对称性来看,我们可以猜想:当点P在短轴端点B处时, 取得最大值,是不是这样呢?
利用焦半径公式及余弦定理不难验证这一猜想是正确的。
若设 ,我们有 。
回头看,在例6中, , ,代入可得 ,故0°≤θ≤60°,可见使θ=90°的点P是不存在的。
又一个问题:若椭圆 上存在一点P,使 ( 、 为长轴端点),求离心率e的取值范围。
分析 不再是椭圆的焦半径,按照例6中的思路一已经不能解决问题,但是我们知道,使 的点P是轨迹是关于 对称的两段圆弧,可先求出圆弧所在圆的方程,然后按照思路二进行研究,下面我们给出这一问题的解答。
解 由对称性,不妨设 ,则 , ,由到角公式得
,即 ,
整理得, 。 ①
又 ,故 。 ②
②代入①得, 。
因点P在椭圆上,故 ,即 ,从而 ,即 ,也就是 ,从而 ,解得 ,又0<e<1,故 。
点评 (1)在解析几何中,直角一般由垂直条件来转化,而一般角则常用到角公式来转化,若想用余弦定理将无法运算进行到底。(2)注意利用椭圆的范围性,由 来建立a、b、c三者之间的不等式关系,从而求出e的范围。
2.应用。
例7 某隧道横断面由抛物线的一段和矩形的三边组成,尺寸如图,某卡车载一集装箱,箱宽3m,车与箱共高4m,试问:该车能否通过此隧道?为什么?
分析 此题为抛物线在实际问题中的应用,可利用抛物线的方程和性质进行研究。
解 以抛物线弧的顶点为原点,建立图示直角坐标系,设抛物线的方程为 ,从图示可以看出,点(3,-3)在抛物线上,故 ,得2p=3,即抛物线的方程是 。
由抛物线的对称性可知,为使此车尽量通过此隧道,车应沿隧道中线行驶,令 代入 得 ,所以集装箱两侧隧道的高度是 。
因为车与箱共高仅4米,即h>4,所以此车能通过此隧道。
点评 (1)实际问题应转化为数学问题来处理,此处通过建立坐标系转化为解析几何中的问题。(2)建系应恰当,尽量使方程为标准方程,分析问题时注意考虑图形的对称性。
⑺ 怎样求解椭圆的中点弦
解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1),B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。
对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦。
(7)高中点弦问题解决方法扩展阅读:
由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
蝴蝶定理是二次曲线一个着名定理,它充分体现了蝴蝶生态美与“数学槐型美”的一致性.不少中数专着或杂志至今还频繁讨论,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式。
对任意直线L0所截的三弦中点中,任意两点总在第三点同侧铅凯猜或异侧.当O、O1、O2中有两点重合时,第三点也重合.“蝴蝶定理”虽然如自然界的蝴蝶种类一样千变万化,然而万变不离其宗,核心在于中孙纯点弦性质。
⑻ 求高中数学的中点弦问题详解,经典题型和做法
高中数学合集网络网盘下载
链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试题渗让高试卷、课件、教材、丛尺视频、各大名师网校滑亏合集。
⑼ 高中 数学 中点弦问题 拜托拜托 求详解!!
很简单,过(1,1)的直线方程y=k(x-1)+1
代入双兆祥曲线方程,x1+x2=2(韦达族键搏定理),解出k,同时要求根的判别式>0
如果k存在,亮或就有这样的弦。