⑴ 初二数学动点问题解题技巧
初二数学动点问题解题技巧如下:
1、数轴上猜岩帆两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数-左边点表示的数。
3、数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
什么是动点问题
动点问题就是以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的函数等其他关系,或变量在一定条件为定值时,进行相关的计算和综合解答,解答这类题目,一般要根据点的运动和图形的变化过程,对其不同情况进行分类求解。
⑵ 数学的动点问题怎么解决
数学中的动点问题,大部分可以转化成方程进行求解。
因为虽然点在动,但在一定的范围内,一定会有一个不变的量,通过这个不变的量,找到等量关系,列方程,解决问题。
因此,解决动点问题,首先对动点运动的时间进行分段,分段的依据是发生变化的节点,然后分段列方程,求解。
⑶ 数学动点问题解题技巧初一
数学动点问题解题技巧初一如下:
关键:化动为静,分类讨论。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知孙蚂数等等。动点问题定点化是主要思想。比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
(1)如果OA=OB,那么点B所对应的数是什么?
(2)从点A到达点B所用时间是3秒,求该点的运动速度.
(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数
【考点链虚】数轴;比较线段的长短.【专题】数形结合(数形结合专题稍后推出).
【分析】(1)由于OA=OB,可得点B所对应的数是点A所对应的数的相反数;
(2)先求出AB的距离,再根据速度=路程÷时间求解;
(3)先求出AC的距离,得到点C所对应的数,由KC=KA,得到点K所对应的数.
【解答】解:(1)∵OA=OB,点A所对应的数是﹣112,∴点B所对应的数是112;
(2)[112﹣(-112)]÷3=3÷3=1.故该点的运动速度每秒为1。
(3)1×9=9,9÷2=4.5,∴点C所对应的数为﹣112+9=712,
点K所对应的数为﹣112+4.5=3.故点C所对应的数为712,点K所对应的数为3。
【点评】考查了数轴和路程问题,熟练掌握数轴上两点间的距离的求法。
⑷ 初一动点问题解题技巧
以下是一些动点问题解题的技巧:
初一数学中,动点问题春迹是一个经典的几何问题。动点问题是指在平码好面直角扒模并坐标系中,一个点沿着特定的路径运动,求这个点在某一时刻的坐标或特定的性质。
总之,解决动点问题需要结合几何、代数和物理等知识,并需要适时使用适当的方法,培养灵活的思维
⑸ 动点问题怎么做
动点问题做法如下:
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射配隐线或弧线上运动的一类开放性题目.
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
方法
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力。
图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在碧扮,请求出x的值;若不存在,说明理由;
(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过悔卖灶的总路程是多少?
动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.
已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)。
(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;
(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.
若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
⑹ 数学动点问题解题技巧初一
动点问题耐薯解题技巧初一:首先要做到仔细理解题意,弄清运动的整个过程和图形的变化,然后再根据运动过程展开分类讨论画出图形,最后针对不同情况寻找等量关系列方程求解。
而对于建立在数轴上的动点问题来说:一种是根据“形”的关系来分析寻找等量关系,也就是利用各线段之间昌穗者的数量关系列方程求解;另一种是从“数”的方面寻找等量关系,就是利用各点在数轴上表示的数之间存在的内在关系列方程。
用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t。
动点问题介绍
“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。解决这类问题的关键是动中求静,灵活运用有关的数学问题来解决问题。数学思想是分类思想、函数思想、方族升程思想、数形结合思想、转化思想。
⑺ 初中数学动点问题解题技巧有哪些
动点问题,是初中的重难点内容。关于动点问题,数轴动点问题最主要的就是分类讨论的思想,简单点就是当等量关系是线段倍长数量关系时,需要对线段表达式进行分类讨论。
第一、是把已知相关的量全标在图上,并且把能够就近找到的已知量也标注在图上,能够得到的结论通通标注在图的旁边,方便在下一步的应用和使用的相应的结论。
在这个过程当中,重点标在图上以后也可以借助我们的一些工具软件如几何画板或者画图脑补动点运动过程,拿着一些工具来做运动辅助,帮助我们看到重点的运动规律。
第二,根据动点地给出的已知相关,找到动点的运动规律以及运动的路程,运动的长度,距离,与时间之间的相互关系。找到动点用动的规规律和运动的过程轨迹,与这相关的量。
第三,根椐运动中的时间或者距离,或者设定整个过程当中一直用到的量,常用的有时间和距离,我们开始说的一些未知数常量。
第四、完成转化。把动点转化成运动的路程,把运动路程转化成相关的表达式,把表达式转换成我们的代数式,然后用代数式列方程,从而来解决我们重点的规律性的问题。
⑻ 数学动点问题解题技巧是什么(初一)
解决动点问题首先要做到仔细理解题意,弄清运动的整个过程和图形的变化,然后再根据运动过程展开分类讨论画出图形,最后针对不同情况寻找等量关系列方程求解。
而对于建立在数轴上的动点问题来说,由于数轴本身的特点,这类问题常有两种不同的解题思路。
一种是根据“形”的关系来分析寻找等量关系,也就是利用各线段之间的数量关系列方程求解。
另一种是从“数”的方面寻找等量关系,就是利用各点在数轴上表示的数之间存在的内在关系列方程。
简介
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
1、集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
2、函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
3、方程与不等式:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
⑼ 初中数学动点问题归类及解题技巧
初中数学动点问题归类枯肢敏及解没枝题技巧如下:
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目,注重对几何图形运动变化能力的考查。解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
初中数学:
《初中数学》内容简介:作为一名具有丰富心理学、教育学、课程与教学理论知识的研究人员,李亦菲博士在本次基础教育课程改革中,参与了课程标准编制、实验教材编写、教学资源开发、评价与考试制度改革、学科教师培训、学校制度建设和管理等多方面的研究和实践工作,并长时期关注“三维目标统整”这一核心理念的理论基础以及操作落实问题。
2007年9月以来,李亦菲进入中央教育科学研究所博士后工作站,与我合作攻克这一重要的理论与实践难题。
⑽ 动点问题的一般解决方法是什么
初中数学的动点问题大致可以分为两种动点1。运动的动点:此类动点给出的有运动方向和运动速度,我们主要根据运动速度×时间=路程,来表示某些线段的长。根据动点的位置可以将线段分为走过的(根据速度×时间来进行表示)、剩下未走的(用动点要运动的总路程-走过的)。特别注意,当动点在折线上运动时,要把走过的线段去掉某些部分才能和所求线段对应;剩下未走的也由于动点移动到不同线段上而改变其终点位置进行表示当所表示线段与动点运动方向不同时,一般采用相似知识,找出和某些可以计算长度且方向与所求线段方向一致的线段来寻求相似比2。不定点:这类动点一般结合存在性问题出现,即是否存在点P使得题目满足一些什么结论或当某些结论存在时,求动点P的位置。此时解答可以把题目要求满足的情况作为一个使用条件,使P恰在满足要求的位置,然后结合几何知识进行解答例如当题目要求是否存在点P,使某个三角形面积为20。我们就要先用代数式表示三角形面积,然后令其值为20即可总之,动点的题目类型较多,这里很难一下说明。在解答时多注意将代数式化简和几何知识结合,你就可以慢慢摸索的其中的一些规律