A. 怎么用万用表测热敏传感器的好坏
热敏电阻的阻值随着温度的变化而变化。根据这一特点,测量时选万用表电阻档10k档,将表笔分别连接于热敏电阻的两端,万用表显示的阻值,一般在300~500kΩ。当用电烙铁靠近热敏电阻时(不要靠在电阻上,以免烧坏),阻值会随着温度的升高而变小。因激光打印机热敏电阻是负温度系数。如表针(或数字)不动,或一开始测量显示的数值就偏小,说明该电阻已损坏。
热电偶温度传感器自然是由热电偶制作而成,热电偶式传感器与热敏电阻温颂乱哪度传感器工作原理不同,发生故障时,检测方法也完全不同,1、电阻测量:金属导体热电偶,常温时电阻很小,工作端温度700-800度时,NTC温度传感器厂家,电阻约为几十欧母;2、电压测量:断开传感器插头,使用直流档来测量热电偶的电压,测得的毫伏级电压应稳定野码,当对传感器加热时,NTC温度传感器供应商,输出电压应同步增长
空调的温度传感器也称温度探头,是一种负温度系数的热敏电阻,即温度升高,阻值变小,温度降低,阻值变大,1、空调自检时的阻值是小于300Ω或大于150kΩ,CPU认为此传感器已损坏,报出故障代码;2、传感器阻值在300Ω和150kΩ之间,CPU不能检出传感器故障,但有一定的误差,这时叫阻值漂陪空移,可用万用表检查,用好的传感器替代比较
C. 如何检测温度传感器的好坏
检测通电状态下是否能使用。
对于温度传感器,能用,就是通电可以工作。好用,就是精度和响应时间合乎规格。因此,不管是电阻输出,电流输出还是电压输出的温度传感器,都是要先通电测试,看看是否有输出值。如果通电后有输出值,即可证明传感器时能用的。
然后通过标准表对于温度值,检查精度,看其是否在标称范围之内。再通过检查变温曲线的延迟时间,来判别传感器的响应速度。
t0.9只要小于30秒,就算是合乎规格的产品。
D. 水温传感器的检测方法
汽车水温传感器的检测方法如下:
1、检测供电电压:拔下插头,用万用表两表笔检测两线之间的电压是否为基准电压5V左右(有的车型直接供12V电压给水温传感器);
2、读取数据流:正常的水温信号一般在95℃左右(高温发动机在115℃左右)。如果检测发现水温传感器信号异常,则应进行检修。如:水温信号显示-40℃说明有断路或者对负极短路,如果显示在130℃不变化那说明对正极短路(有些车会显示在140度);
3、检测电阻:可对水温传感器进行加热处理,然后测量其阻值(在外部温度30度时电阻约为1.4千欧到1.9千欧)。电阻值大于标称值时,表示零件有断路性故障或者电阻值变大,已损坏;所测阻值小于标称值时,要考虑到是外围连接的元件导致其它一起的零件的影响,可以将元件一端或两端分离电路进行测量,方便得到精准的测量结果。
E. 水温传感器怎么检测好坏
水温传感器的检测方法:
1.用数字电阻模拟器,模拟水温温度,与实际情况对比;
2.用红外测温仪测试水温传感实际温度,与水温表对比;
3.用万用表测试水温传感器的电阻值,用电吹风加热水温传感器,电阻值减小;
4.用万用表测试水温传感器的电阻值并用红外测温仪测试水温温度,并与维修手册上温度与电阻值的。
汽车水温传感器就是热敏电阻,几千欧~几十千欧,故障原因就是短路、断路和接触不良,用万用表测一下就基本清楚了,最容易出的故障是接触不良,其次是断路,短路的可能性很小。
F. 热电阻传感器的检测方法
1楼,2楼的回答基本正确。不过他们说的方法只是检测电阻的通断,好坏而已。要检测它的精度,你得对照热电阻温度变化与阻值变化表。
G. 传感器的检测方法
传感器一般有三种检测方法:1、直接检测,就是使用传感器仪表直接检测,传感器仪表会直接表示检测所需要的结果;2、间接检测,利用物理量和函数关系进行检测,通过函数关系式得到所需要的检测结果;3、组合检测,应用传感器仪表的同时运用物理量和联立方程组求解,得到所需要的检测结果。 基本上,每个行业中都会运用到压力传感器,汽车利用传感器有三种方法:1、加压检测,它是指汽车的水箱温度达到沸点,也就是人们常说的“车子水箱里的水煮成了开水”的情况。水箱的温度可以从汽车水温表的指示读数看出,一般要求不能超过95
H. 怎样检测热传感器
用一个新的温度感应器测同一物件的温度与之对比即可,相同则证明没有问题,反之则证明温度感应器损坏。维修方法:先检测一下测温元件有问题没I热电阻或热电偶)测量电阻值或MV值,这一步正常,用其它好的温度变送器的整体直接拆下接到这个回路中看是否正常就可以了。如果是测温元件损坏,更换一下就可以了。一般温度变送器出问题的哪渗可能性较小。温度传感器:温度传感器(temperature transcer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。接触式:接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏告巧电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。非接触式:它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数袜缓键。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温 逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。