导航:首页 > 解决方法 > 比例分配问题及解决方法

比例分配问题及解决方法

发布时间:2023-04-22 02:36:17

⑴ 按比例分配的意义

【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

解 总份数为 47+48+45=140

一班植树 560×47/140=188(棵)

二班植树 560×48/140=192(棵)

三班植树 560×45/140=180(棵)

答:一、二、三班分别植树188棵、192棵、180棵。

例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米颂戚迹?

解 3+4+5=12 60×3/12=15(厘米)

60×4/12=20(厘米)

60×5/12=25(厘米)

答:三角形三条边的长分别是15厘米、20厘米、25厘米。

例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

解 如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

1/2∶1/3∶1/9=9∶6∶2

9+6+2=17 17×9/17=9

17×6/17=6 17×2/17=2

答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

例4 某工厂第一、二、三车间人野并数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

解 80÷(12-8)×(仔兆8+12+21)=820(人)

答:三个车间一共820人。

小学数学30类应用题(十七)按比例分配问题

⑵ 小学比例应用题的解题方法

小学比例应用题的解题方法

导语:抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。以下是我整理小学比例应用题的解题方法的资料,欢迎阅读参考。

小学比例应用题的解题方法1

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

1、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:

三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:

判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:

计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例4:

填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例5:

六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例6:

自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例7:

玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉, 还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

6、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

例8:

两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44。

两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?

和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?

这就是综合法的思路。

7、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知 数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

例9:

一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。

例10:

一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

这两题用方程解就比较容易。

8、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

例11:

汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?

上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。

例12:

一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?

其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

9、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

例13:

什么说除2外,所有质数都是奇数?

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约 数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

例14:

判断题:

(1)同一平面上两条直线不平行,就一定相交。(错)

(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)

10、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般性存在于特殊性之中。

例15:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

例16:正方形的面积和边长成正比例吗?

如果正方形的边长为a,面积为s。那么,s:a=a(比值不定)

所以,正方形的面积和边长不成正比例。

11、化归法

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法。化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

例17:某制药厂生产一批防“非典”药,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

例18:超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?

需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。

小学比例应用题的解题方法2

近年来,小学数学教材中比和比例的内容虽然简化了,但它仍是小学数学教学的重要内容之一,是升入中学继续学习的必要基础。

用比例法解应用题,实际上就是用解比例的方法解应用题。有许多应用题,用比例法解简单、方便,容易理解。

用比例法解答应用题的关键是:正确判断题中两种相关联的量是成正比例还是成反比例,然后列成比例式或方程来解答。

(一)正比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x、y表示两种相关联的量,用k表示比值(一定),正比例的数量关系可以用下面的式子表示:

例1

一个化肥厂4天生产氮肥32吨。照这样计算,这个化肥厂4月份生产氮肥多少吨?(适于六年级程度)

例2

某工厂要加工1320个零件,前8天加工了320个。照这样计算,其余的零件还要加工几天?(适于六年级程度)

例3

一列火车从上海开往天津,行了全程的60%,距离天津还有538千米。这列火车已行了多少千米?(适于六年级程度)

(二)反比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的数量关系可以用下面的式子表达:

x×y=k(一定)

例1

某印刷厂装订一批作业本,每天装订2500本,14天可以完成。如果每天装订2800本,多少天可以完成?(适于六年级程度)

例2

一项工程,原来计划30人做,18天完成。现在减少了3人,需要多少天完成?(适于六年级程度)

例3

有一项搬运砖的任务,25个人去做,6小时可以完成任务;如果相同工效的人数增加到30人,搬运完这批砖要减少几小时?(适于六年级程度)

答:增加到30人后,搬运完这批砖要减少1小时。

例4

某地有驻军3600人,储备着吃一年的粮食。经过4个月后,复员若干人。如果余下的粮食可以用10个月,求复员了多少人?(适于六年级程度)

答:复员了720人。

(三)按比例分配

按比例分配的应用题可用归一法解,也可用解分数应用题的方法来解。

用归一法解按比例分配应用题的核心是:先求出一份是多少,再求几份是多少。这种方法比解分数应用题的方法容易一些。用解分数应用题的方法解按比例分配问题的关键是:把两个(或几个)部分量之比转化为部分量占总量的(几个部分量之和)几分之几。这种转化稍微难一些。然而学会这种转化对解答某些较难的比例应用题和分数应用题是有益的.。

究竟用哪种方法解,要根据题目的不同,灵活采用不同的方法。

有些应用题叙述的数量关系不是以比或比例的形式出现的,如果我们用按比例分配的方法解这样的题,要先把有关数量关系转化为比或比例的关系。

1.按正比例分配

2.按反比例分配

* 例1

某人骑自行车往返于甲、乙两地用了10小时,去时每小时行12千米,返回时每小时行8千米。求甲、乙两地相距多少千米?(适于六年级程度)

两地之间的距离:12×4=48(千米)

3.按混合比例分配

把价格不同、数量不等的同类物品相混合,已知各物品的单价及混合后的平均价(或总价和总数量),求混合量的应用题叫做混合比例应用题。混合比例应用题在实际生活中有广泛的应用。

* 例1

红辣椒每500克3角钱,青辣椒每500克2角1分钱。现将红辣椒与青辣椒混合,每500克2角5分钱。问应按怎样的比例混合,菜店和顾客才都不会吃亏?(适于六年级程度)

* 例2

王老师买甲、乙两种铅笔共20支,共用4元5角钱。甲种铅笔每支3角,乙种铅笔每支2角。两种铅笔各买多少支?(适于六年级程度)

(四)连比

如果甲数量与乙数量的比是a∶b,乙数量与丙数量的比是b∶c,那么表示甲、乙、丙三个数量的比可以写作a∶b∶c,a∶b∶c就叫做甲、乙、丙三个数量的连比。

注意:“比”中的比号相当于除号,也相当于分数线,而“连比”中的比号却不是相当于除号、分数线。

* 例1

已知甲数和乙数的比是5∶6,丙数和乙数的比是7∶8,求这三个数的连比。(适于六年级程度)

答:甲、乙、丙三个数的连比是4O∶48∶42=20∶24∶21。

小学比例应用题的解题方法3

1.解比例是利用比例的基本性质:在比例中,两个外项的积等于两个内项的积。再转化成方程。

2.求比例中的未知项,叫做解比例。

3.根据比例的基本性质(即交叉相乘),如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。

比例应用题:

是小学六年级奥数中的一个重要内容。它既是整数应用题的继续与深化,又是学习更多数学知识的重要基础,同时,这类题又有着自身的特点和解题的规律。在处理几个量的倍比关系时,比例应用题与分数百分数应用题间有很多相似之处,但利用比例处理问题要方便灵活得多。

要解决好此类问题,须注意灵活运用画线段示意图等手段,多角度、多侧面思考问题。在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法的同时,不断地开拓解题思路。

用比例方法解应用题的一般步骤:

解比例的方程怎么

解比例常用于解决比例关系明显的问题,如相似三角形(图形),线段分割,三角函数,化学方程式计算等。比例的基本性质是两个外项的积等于两个内项的积。

解比例方程基本步骤

1.根据题意列出比例式(若已给出比例式则跳过,实际问题中需注意单位换算等问题)

2.依据比例式求解

注意:解比例和方程基本是相同的,但同样也要注意等号对齐。

根据比例的基本性质:“2个外项的积等于2个内项的积。”来解比例,即在a∶b=c∶d中ad=bc

同时要注意运用比例的互相转换和其他性质也可以解决问题。

例如

①反比性质:在a/b=c/d中,b/a=d/c(abcd≠0)

②更比性质:在a/b=c/d中,a/c=b/d(αbcd≠0)

③合比性质:在a/b=c/d中,(a+b)/b=(c+d)/d(bd≠0)

④分比性质:在a/b=c/d中,(a-b)/b=(c-d)/d(bd≠0)

3.注意实际取值范围等,避免出现分母为零、不符题目要求不合实际等问题。

方程定义

方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。

通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。

在数学中,一个方程是一个包含一个或多个变量的等式的语句。求解等式包括确定变量的哪些值使得等式成立。变量也称为未知数,并且满足相等性的未知数的值称为等式的解。

小学比例应用题的解题方法4

一、分数应用题

1、量率对应:每一个分率都有一个数量与它对应,这种对应关系叫做量率对应。

单位“1”= 分率对应量 ÷ 分率

2、单位“1”的标志与线索

①“占”、“是”、“比”、“相当于”这些词语后面的对象。

(例:a是(占、相当于)b的几分之几,就把b看作单位“1”)

② 题目没有明确给出比较对象,需要分析增加(减少)了谁的几分之几,一般是指增加(减少)了前面那种状态的几分之几,也就是说前面那种状态下的量就是单位“1”。

例:水结成冰后体积增加了几分之几,意思是增加了原来状态(水)的几分之几。

③“率”的寻找方法

明示的“率”自不必说。 没有明确指出的“率”,一般可以画线段图,通过分析整体的组成来找出。

3、单位1的转化

① 单位“1”不同,分率之间不能互相加减。

② 部分与整体之间单位“1”的转化。

③ 统一单位“1”:当题目中出现多个分率时,如果各个量都不改变,就可以设公共量为单位“1”,如果有的量发生改变,通常都会找“不变量”作为单位“1”。

二、比例应用题

1、比和比例: 比的基本概念、比与除法、分数的关系、比的基本性质(等同于商不变的性质与分数基本性质)、化简比、比和份数的关系(分数和单位1的关系)、内项积等于外项积;

2、比例的简单应用:按比例分配、简单比与连比的相互转化;

3、比例中的不变量(分数应用题中把不变量设为单位1):分数与比例的转化、利用公共量统一份数、利用不变量统一份数(把不变量调为相等的份数);

4、正比例反比例;

5、设数法;

6、列表法。

;

⑶ 六年级数学按比例分配问题的解题思路

将一个总量按照一定的比分成若干个分量,叫做按比例分配。解题时,确定分配总量和分配的比是关键。

按比例分配的方法是,将已知整数比或者分率比变为按份数分配,把比的各项相加得到总份数,各项和总分数的额比就是各个分量在总量中所占的份数,由此可以求得各个分量。具体有以下三种情形:

(1)已知分配比时,要明确分配总量;已知总数量不是几个分量的总和时,需要进行计算、转换、调整后,再按比例进行分配。

(2)当已知三个量中的两个量两两相比时,需将两两相比的中间量的份数转化为相同的份数,将两两纸币转化为三谨缺个量的比,再按比例进行分配。

(3)当已知与总数量相关联的两个量的比是,应根据基本的数量关系式把两个关联量的比转化为分配比,再按比例进行分配。

⑷ 怎样让学生掌握按比例分配问题的不同解法

一、教学情况记载:六年级数学,“按比分配的实际问题”已教过n次,拿到教材初读一遍,自作聪明进行如下处理:
以练习十二第3题主题,逐步拓展。
救生员与游客共56人,每条船上有1名救生员和7名游客,一共有多少游客?多少名救生员?
1、学生用平弊启均分,粗卜逗转化成分数应用题顺利解决。
平均分:56÷(1+7)=7(条) 救生员1×7=7(人) 游客7×7=49(人)
按比例分配:56×1/(1+7)= 7(人) 56×7/(1+7)= 49(人)
2、接着把每条船上有1名救生员和7名游客,改为每条船上,救生员与游客的人数比是1:7
让学生试算,期间让学生岩卖经历:阅读理解—分析解答—回顾反思 解决问题的完整过程。
3、阅读例2完整算法,交流学习心得,提炼基本算法:按比例分配的基本解法。
二、教学效果:学生掌握“按比例分配”的题目特征,基本解法。课堂反应较好,学习效率较高。
三、教学反思:是否符合教材编排意图?(从溶液配比展开,认识稀释瓶,逐步经历:阅读理解—分析解答—回顾反思 解决问题的完整过程。)请大家参与研讨。

⑸ 按比例分配的实际问题

按比例分配的实际问题如下:

1.学校把栽480棵树猛绝没的任务,按着六年级三班的人数分配给各组,一组有47人枝纳,二组有38人,三组有35人,三个组各应栽树多少棵?

把一个数按着一定的比来进行分配,这种分配方法通常叫做按比例分配.归纳总结:解答按比例分配问题,要根据已知条件,把已知数量与份数对应起来,转化为求一个数的几分之几来做

⑹ 1按比分配问题的解题方法有哪几种 2按比分配时,每种方法应先算什么再算什么

一共3种,应先算比例

⑺ 小学数学比例的公式(还有按比例分配,加些例题)

1、表示两个比相等的式子叫做 比例 .比例是一个等式.
2、组成比例的四个数,叫做比例的 项 .两端的两项叫做比例的 外项 ,中间的两项叫做比例的 内项 .
3、比例的基本性质:在比例里,两个外项的积等于两个内项的积.附加:比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变.
4、如果a×b=1×2,那么a:1与2:b能组成比例.
附加:判断两个比能否组成比例,也可以根据比的基本性质把这两个比都化成最简比,如果所化成的最简比相同,那么这两个比就能组成比例,否则不能.
5、求比例中的未知项,叫做 解比例 .
6、解比例的方法:根据比例的基本性质解比例,先把比例转化成外项乘积与内项乘积相等的形式(即方程),再通过解方程来求出未知项的值.
7、两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做 成正比例的量 ,它们的关系叫做 正比例关系 .如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为 y :x=k(一定).
8、判断两种量是否成正比例的方法先找变量(找相关联的量);再看定量(两种量的商是否一定);如果是一定的就成正比例关系,不一定就不成正比例关系.
9、两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做 成反比例的量 ,它们的关系叫做反比例关系.如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用式子表示为x×y=k(一定).
10、一幅图的图上距离和实际距离的比,叫做这幅图的 比例尺 .图上距离 :实际距离=比例尺 或 图上距离÷实际距离=比例尺
附加:比例尺是一个比,它表示图上距离和实际距离的倍比关系,因此不能带有计量单位.
11、比例尺分数值比例尺(如1 :100000)和线段比例尺(如:0_______50km,它表示图上1cm的距离相当于实际的50km).
12、已知图上距离和实际距离求比例尺,公式:比例尺=图上距离 :实际距离
13、已知比例尺和实际距离求图上距离,公式:图上距离=实际距离×比例尺
14、已知比例尺和图上距离求实际距离,公式:实际距离=图上距离÷比例尺
以上是有关比例的概念和公式,已经总结得差不多了.
按比例分配是一种应用题,常用解题公式:要分配的总量×各部分量的分率=各部分量
例题1
某学校有学生303名,男女生人数之比是51 :50.这所学校的男女生各有多少人?
男303×51/(51+50)=153(人)
女303×50/(51+50)=150(人)
答:男生有153人,女生有150人.
分析:要分配的总明伍量是学生总人数303人,分氏槐率要从男女生人数比里找,男生人数分率:51/(51+50) 女生人数分率:50/(51+50).最后把数字带入公式里,即算式:男303×51/(51+50)=153(人) 女303×50/(51+50)=150(人) 求出来的男女生各有的激核或人数就是各部分量.验算一下153+150=303(人),这就是按比例分配应用题中的一种.
例题2
一个三角形的内角度数比是1 :2 :3 ,求各个内角度数,以及这是什么三角形?
180×1/(1+2+3)=30°
180×2/(1+2+3)=60°
180×3/(1+2+3)=90°
答:内角度数分别是30°、60°、90°,是个直角三角形.
分析:这道题的题目上没有总量,但有认真听课的同学都知道三角形的内角和(三个角的度数加起来)是180°;分率找法和上题一样,只是这题里有3个(其实不管题目中给出多少个比,分率都是这样找的).
例题3
用120cm的铁丝做一个长方体的框架.长、宽、高的比是3 :2 :1.这个长方体的长、宽、高分别是多少?
120÷4=30(厘米)
长30×3/(3+2+1)=15(厘米)
宽30×2/(3+2+1)=10(厘米)
高30×1/(3+2+1)=5(厘米)
答:长15厘米,宽10厘米,高5厘米.
分析:这里的120可不是总量,这是长方体的棱长总和(长方体棱长和=(长+宽+高)×4),根据长方体棱长和公式,求出真正的总量,这才是这种题要注意的地方.
1、空气中氧气和氮气的体积比是27 :78.660立方米空气中有氧气和氮气各多少立方米?
2、水泥、沙子和石子的比是2 :3 :5.要搅拌20吨这样的混凝土,需要水泥,沙子和石子各多少吨?
4、学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人.三个班各应栽多少棵树?
这位同学是在复习吗?

⑻ 某企业为全体员工定制工作服,请服装公司的裁缝量体裁衣。裁缝每小时为52名男员工和35名女员工量尺寸

结果为720名。

解析:本题考查的是比例问题。由题目可知,男员工与女员工的人数比为11:7 ,说明给35个女的裁衣服就可以给55个男的裁衣服,实际却给52个男员工裁,从而导致了24个没有裁衣服,一份少裁3个。按此条件求出裁剪时间,乘以美小时裁衣服人数就是总人数。

解题过程如下:

解:

男员工与女员工人数比为11:7=55:35,

裁缝量尺寸的时间:

24÷(55-52)

=24÷3

=8(小时)

8×(55+35)

=8×90

=720(名)

竖式如下:


个位:8×0=0,十位:8×9=72,十位为2,百位进7,所以是720。

答:则该企业共有720名员工。

(8)比例分配问题及解决方法扩展阅读:

按比例分配应用题的解答方法:

1、分析条件,抓住特点

条件是应用题的最基本的因素。分析条件是解答应用题的根本途径。按比例分配应用题的结构都很简单,在这类应用题的条件中都会告诉学生分配的是什么,要按照什么来分配。

按比例分配应用题的类型大致分为三类:一是已知几个部分的和与几个部分之间的比,求各个部分是多少;二+是已知几个部分之间的比和其中一个部分是多少,求另外的部分是多少;三是已知几个部分之间的比和部分之间的的差,求各个部分坦丛唤是多少。

2、让凯明确解法,概括步骤

按比例分配问题的解法有三种:一是把比看作分得的份数,用整数、小数来解答;二是把比化为分数,用分数来解答;三是用比例知识来解答。

第二种解题方法一般是把几个数的比转化成几个数分别占总数的几分之几,再根据分数郑弯乘法的意义,求出这几个数。

⑼ 如何解决按比例分配问题

一、含义不同

1、按比例分配的定义在日常生活中,常常需要把一定的数量按照一定的比例来进行配,这种分配方法称为按比例分配。按比例分配是比的概念的一种应用。

2、平均数是这批数据的和除以数据总次数后所得的商。

二、算法不同

1、按比例分配的问题可以把比看作分得的份数,通过先求出1份数,再求出几份数;也可以把比转化成所占的百分比或分数,再用乘法来计算。

2、平均数的计算是用所有数据的和除以需要分的总次数后所得的商。

⑽ 比的应用题解题技巧六年级

按比分配应用题这类应用题实际上与之前学过的平均分问题、归一问题、分数应用题的解题方法和思路是如出一辙的。尤其是比和分数本来就有着千丝万缕的联系,比的应用题完全可以转化成分数应用题来解答。

例如:2:3,就是2份比3份,可以是4和6,6和9。遇到难点的,如:甲乙两个服装厂12月生产的数量比为6:7,单价比为11:10,两个厂的总产值是8160万元。求两个服装厂的产值分别是多少万元?

解:甲厂产值:乙厂产值=(甲单价X甲数量):(乙单价X乙数量)=(11X6):(10X7)=33:35。

8160÷(33+35)=120(万元),120X33=3960(万元),120X35=4200(万元)。

列方程解应用题步骤:

1、实际问题(审题,弄清所有已知和末知条件及数量关系)。

2、设末知数(一般直接设,有时间接设),并用设的末知数的代数式表示所有的末知量。

3、找等量关系列方程。

4、解方程,并求出其它的末知条件。

5、检验(检验是否是原方程的解、是否符合实际意义)。

6、作答。

阅读全文

与比例分配问题及解决方法相关的资料

热点内容
404x125的简便运算方法 浏览:8
水泥多孔砖砌墙方法图片 浏览:705
孢谷草种植方法 浏览:283
莴笋青菜种植方法 浏览:736
前列腺增生怎么治疗方法 浏览:846
12伏蓄电池存电量计算方法 浏览:219
冲压工36技计算方法计算实例 浏览:858
骨化三醇免疫治疗方法 浏览:306
三联疗法如何服用方法 浏览:426
93乘43加91的简便方法 浏览:393
海螺吃了头晕有什么方法解决 浏览:812
如何写通项方法 浏览:674
小学生如何写作业快的方法 浏览:347
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429