导航:首页 > 解决方法 > 病原体耐药性检测方法

病原体耐药性检测方法

发布时间:2023-04-18 16:12:32

❶ 我对有些抗生素比较耐药,但却不明白对那些,哪里有这方面的检测做

有个乐观肠道菌群基因检测,报告中有抗生素耐药可能的说明,详细罗列了常用抗生素耐药性风险预警,保证用药的安全性和有效性。

❷ 传染病监测的技术方法都有哪些

一、病原学检查
1、病原体的直接检出:许多传染病可通过显微镜或肉眼检出病原体而明确诊断,如从血液或骨髓涂片中检出疟原虫、利什曼原虫、微丝蚴、回归热螺旋体等;从大便涂片中检出各种寄生虫卵及阿米巴原虫等;从脑脊液离心沉淀的墨汁涂片中检出新型隐球菌等;肉眼观察粪便中的绦虫节片和从粪便孵出的血吸虫毛蚴等。
2、病原体分离:细菌、螺旋体和真菌可用人工培养基分离培养,如伤寒杆菌、志贺杆菌、霍乱弧菌、钩端螺旋体和新型隐球菌等。立克次体需经动物接种或细胞培养才能分离出来,如斑疹伤寒、恙虫病等。病毒分离一般需细胞培养,如登革热、脊髓灰质炎等。用以分离病原体的检材可采用血液、尿、便、脑脊液、痰、脊髓和皮疹吸出液。
3、特异性抗原检测:可较快地提供病原体存在的证据,其诊断意义较抗体检测更为可靠。常用方法有凝集试验、酶联免疫吸附试验(ELISA)、酶免疫测定(EIA)、荧光抗体技术(FAT)、放射免疫测定(RIA )、流式细胞检测(FCM)等,必要时可作核酸定量检测、基因芯片技术检查。
4、特异性核酸检测:可用分子生物学检测方法,如放射性核素或生物素标记的探针作DNA印迹法或RNA印迹法,或用聚合酶链反应(PCR)或反转录PCR(RT-PCR)检测病原体的核酸。必要时还可作原位聚合酶链反应(PCR)。
二、特异性抗体检测
在传染病的早期,特异性抗体在血清中往往尚未出现或滴度很低,而在恢复期或后期抗体滴度有显着升高,故在急性期及恢复期双份血清检测其抗体由阴性转为阳性或滴度升高4倍以上有重要诊断意义。特异性IGM抗体的检出有助于现存或近期感染的诊断。蛋白印迹法(WB)(又称免疫印迹法)的特异性和灵敏度都很高。常用于艾滋病的确定性诊断。

❸ 病原微生物中细菌常见检测方法有哪些

1、快速测试片技术法

快速测试片是指以纸片、纸膜、胶片等作为培养基载体,将特定的培养基和显色物质附着在上面,通过微生物在上面的生长、显色来测定食品中微生物的方法。

细菌总数检测纸片的研制始于 20 世纪 80 年代,其主要优点是简便、实用、经济、操作性强。近年来以滤纸和美国某公司的 Petrifilm 为载体的测试片已开始被广泛应用。

2、生物电化学方法

生物电化学方法是指通过电极测定微生物产生或消耗的电荷,从而提供分析信号的方法。微生物在滋生代谢过程中,培养基的电化学性质如电流、电位、电阻和电导等会发生变化,所以可以通过检测分析这些电化学参量的变化来实现对微生物的快速测定。

常见的有:阻抗分析法、电位分析法、电流分析法等。生物电化学方法具有测量快速、直观、操作简单、测量设备成本低和信号的可控性等特点。

3、微菌落技术

微菌落是指细菌生长繁殖早期在固相载体上所形成的只能借助于显微镜观察的微小菌落。微菌落技术具有快速、经济、实用的特点,其研究始于 20 世纪50年代,定量测定技术从 20 世纪 70 年代开始,国外已有报道将该法应用于水、食品中细菌总数的快速检测。

4、气相色谱法

气相色谱应用到微生物的检测中,主要是依据不同微生物的化学组成或其产生的代谢产物各异,利用上述色谱检测可直接分析各种体液中的细菌代谢产物、细胞中的脂肪酸、蛋白质、氨基酸、多肽、多糖等,以确定病原微生物的特异性化学标志成分,协助病原诊断和检测。

5、高效液相色谱法

利用高效液相色谱检测可分析各种体液中的细菌代谢产物、病原微生物等,以确定病原微生物的特异性化学标志成分,协助病原诊断和检测。

❹ 微生物检验必须掌握的三大耐药机制

微生物检验必须掌握的三大耐药机制

你知道什么是微生物检验吗?你对微生物检验了解吗?下面是我为大家带来的关于微生物检验必须要知道的三大耐药机制的知识,欢迎阅读。

一、产生灭活抗生素的各种酶

1、 β—内酰胺酶(β-lactamase)

β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第核悄厅2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。

(1)超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs)

ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。

国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议,根据抗菌药的PK/PD理论,适当改变给药剂量和给药间隔。以使血药浓度超过细菌MIC的时间达40%给药间隔以上,或许是有效的。

(2)头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。

通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌改隐素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续运侍稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。

实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突变株。当临床出现上述细菌感染,开始几天三代头孢菌素治疗敏感,而随后发生耐药时,我们可怀疑为高产AmpC酶的细菌感染,四代头孢菌素和碳青霉烯类抗生素不受具影响,可供临床选用。含酶抑制剂的复方制剂不能用于治疗产AmpC酶菌株的感染。

(3)金属酶(metalloβ-1actamase)

大部分β-内酰胺酶的活性位点是丝氨酸残基,但也有一小部分活性位点为金属离子的酶类。第一个发现的以金属离子为活性中心的酶是由蜡样芽抱杆菌产生的头孢菌素酶,能被EDTA所抑制,之后世界各地均发现了能产生这类酶的各种细菌。1988年Bush首次将该酶定名为金属β-内酰胺酶(metalloβ-1actamase),简称金属酶。金属β-内酰胺酶耐受β—内酰胺酶抑制剂且可水解几乎所有β—内酰胺类抗生素(包括亚胺培南)。该酶已在气单胞菌、嗜麦芽窄食单胞菌、洋葱伯克霍尔德氏菌中发现,其中嗜麦芽窄食单胞菌的亚胺培南耐药性由染色体介导,而脆弱拟杆菌、肺炎克雷伯氏菌、铜绿假单胞菌中质粒介导的突变株在日本已有报道。由粘质沙雷氏菌产生的金属β—内酰胺酶IMP-1型可在类似接合子的intl3上移动,已经传播到铜绿假单胞菌、肺炎克雷伯氏菌和产碱杆菌。金属酶可以水解碳青霉烯类和最近开发的第四代头孢菌素。金属β-内酰胺酶有广泛传播的潜力,对几乎所有的β—内酰胺类抗生素均具有水解活性,是目前所知的最强的β-内酰胺酶-。

2、氨基糖甙修饰酶(或钝化酶/灭活酶)

在细菌对氨基糖甙类抗生素产生耐药的机制中,修饰酶介导的耐药最为流行,酶促修饰的氨基糖甙类抗生素不能与核糖体靶位作用,因此失去抗菌活性。修饰酶主要包括乙酰转移酶、磷酸转移酶和核苷转移酶。三类氨基糖苷修饰酶的作用机制各不相同:乙酰转移酶(AAC)修饰依赖于乙酰辅酶A的N-乙酰化:磷酸转移酶(APH)修饰依赖于ATP的O-磷酸化;核苷酸转移酶(ANT)修饰依赖于ATP的腺苷化。在革兰氏阴性病原菌中,最常见的氨基糖苷修饰酶是AAC(6’),使氨基糖苷类抗生素1—、3—、2’—或6'—位乙酰化,如今已发现16种编码AAC(6’)的基因。铜绿假单胞菌和肠杆菌科细菌趋向于产生AAC(3)、AAC(6’)、ANT(2’’)以及APH(3’);葡萄球菌和粪肠球菌经常产生ANT(4’)(4’’)或双功能的AAC(6’)/APH(2”)。葡萄球菌对庆大霉素、卡那霉素和妥布霉素的`耐药性和肠球菌的高度庆大霉素耐药性通常由双功能酶介导,这些酶通常(但非总是)由位于多重耐药质粒上的转座子(Tn924)编码,如葡萄球菌具有的转座子Tn5405编码的APH(3’)(提供卡那霉素、新霉素和阿米卡星耐药性),而其他的定位于染色体。越来越多的菌株可产生2种或更多种酶,对抗氨基糖苷类抗生素。在过去几年里常见的组合是庆大霉素修饰酶ANT(2’’)和AAC(3)]与AAC(6’)结合,导致对庆大霉素、妥布霉素、耐替米星、卡那霉素和阿米卡星的广谱耐药性。

氨基糖苷类抗生素对非发酵菌、肠杆菌科及一些革兰氏阳性球菌均有很好的抗菌活性,与β—内酰胺类抗生素联用有协同抗菌作用,在感染治疗中占有重要地位。但由于以上耐药机制的存在,细菌耐药问题也日趋严重,应该引起重视,可喜的是阿米卡星等对MRSA和产ESBLs菌株仍保持17%-40%的敏感率。

二、改变药物作用靶位

1、 青霉素结合蛋白(PBP)的改变导致的β—内酰胺类抗生素耐药

青霉素结合蛋白(PBP)参与了肽聚糖合成的最后阶段。高分子量PBP常常为多模块,具有N末端糖基转移酶区和C末端转肽酶区。转肽酶区的活性位点丝氨酸与酶的天然结构相仿,可与与β—内酰胺类抗生素发生不可逆酰化。青霉素结合蛋白(PBP)的改变常导致如下两种临床重要的耐药表型。

(1)耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus arueus,MRSA)

MRSA是20世纪60年代英国首先报道的一种严重的临床耐药致病菌,20世纪80年代以来,世界各地都相继发生MRSA医院感染的暴发流行,并逐年增多。MRSA耐药分为固有耐药和获得性耐药,固有耐药是由染色体介导的,其耐药性的产生是因为细菌产生一种特殊的青霉素结合蛋白PBP2a(或PBP2’),分子量为78000的蛋白质,与β内酰胺类抗生素的亲和力减低,从而导致细菌对β-内酰胺类抗生素耐药。PBP2a由mecA基因编码,95%以上的MRSA菌株能检测到mecA基因,而敏感株则无。获得性耐药是由质粒介导的,细菌获得耐药基因后,产生大量β-内酰胺酶(而不是PBPs),使耐酶青霉素缓慢失活,表现出耐药性,多为临界耐药。

在MRSA检测过程中,凡属MRSA,不管其对其他β-内酰胺类抗生素MIC值或抑菌圈的大小,实验室均应向临床报告为对所有青霉素类、头孢菌素类、碳青霉烯类、碳头孢烯类和β内酰胺类—酶抑制剂复合制剂耐药,以免误导临床用药。MRSA感染的治疗是临床十分棘手的难题之一,关键是其对许多抗生素具有多重耐药性,万古霉素是目前临床上治疗MRSA疗效肯定的抗生素,应用30多年来未发现耐药菌株。

(2) 耐青霉素肺炎链球菌 (Penicillin resistant Streptococcus pneumoniae,PRSP)

长期以来肺炎链球菌对青霉素高度敏感。MIC在0.005-0.01mg/L之间。1967年澳大利亚首次报道耐青霉素肺炎链球菌,MIC为0.5mg/L,此后世界许多国家和地区均有报道,且耐药率迅速上升。PRSP的耐药机制肺炎链球菌的青霉素结合蛋白(PBP)发生改变,使其与青霉素的亲和力减低。肺炎链球菌有6种PBP:1a、1b、2x、2a、2b和3,其中PBP2b最为重要,如果青霉素结合到PBP2b上并使之抑制即导致细菌溶解和死亡;反之,PBP2b发生突变,青霉素不能产生作用,则导致PRSP。在PRSP高耐菌株中(MIC≥2μg/m1)可有多达4种PBP(主要是1a、1b、2x、2b)同时发生改变[7]。

肺炎链球菌是引起社区获得性肺炎的重要致病菌。目前,国内PRSP的发生率在4%左右,明显低于欧洲国家,在亚洲也属于中等水平,且MIC多小于1mg/L,因此,在社区获得性肺部感染病原菌中,PRSP尚不构成严重威胁,青霉素仍可作为首选治疗药物。但是耐药没有国界,中国日前PRSP发生率尚低.但决不意味着不要重视,而是应该进一步加强PRSP的耐药监测。对于PRSP感染临床治疗推荐使用头孢噻肟/头孢曲松、新喹诺酮类(如司帕沙星)。若属PRSP严重感染则需应用万古霉素或加用利福平。

2、 DNA拓扑异构酶的改变引起喹诺酮类抗生素耐药

喹诺酮类药物的作用机制主要是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用。细菌DNA拓扑异构酶有I、Ⅱ、Ⅲ、Ⅳ,喹诺酮类药物的主要作用靶位是拓扑异构酶Ⅱ和拓扑异构酶Ⅳ。拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中。革兰氏阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰氏阳性菌中拓扑异构酶Ⅳ是第一靶位。

当编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ的parC和parE亚单位中任一亚基的基因发生突变均可引起喹诺酮类的耐药性。在所有的突变型中,以gyrA的突变为主,占80%左右,其次是gyrB、parC和parE突变。在所有这些突变类型中,若Ⅱ型拓扑异构酶上存在2个突变点(如gyrA和parC上),它们引起对氟喹诺酮类的耐药远远大于只有一个突变点(如gyrA或gyrB上),前者是后者的3-4倍。同时没有发现突变仅出现在parC基因这一现象。这可能是因为DNA促旋酶是氟喹诺酮类的重要靶位,gyrA亚单位的改变可引起酶结构发生变化致空间位障,阻止喹诺酮类进入喹诺酮类作用区,或引起物理化学变化,干扰喹诺酮与酶的相互作用。这些结果显示gyrA上突变的出现是引起细菌对喹诺酮类发生耐药的主要机制,而parC突变只是进一步引起铜绿假单胞菌对喹诺酮的高度耐药。

DNA拓扑异构酶的改变是细菌耐喹诺酮类抗菌药的主要机制,其他耐喹诺酮类的机制还包括后面将要谈到的细菌膜通透性改变和主动外排机制。

三、细胞膜透性屏障和抗生素主动外排泵

细菌可以通过细胞壁的障碍或细胞膜通透性的改变,形成一道有效屏障,使得抗生素无法进入细胞内并达到作用靶位而发挥抗菌效能,这也是细菌在进化与繁殖过程中形成的一种防卫机制。这类耐药机制是非特异性的,主要见于革兰氏阴性菌。因为革兰氏阴性菌细胞壁粘肽层外面存在着类脂双层组成的外膜,外层为脂多糖,由紧密排列的碳氮分子组成,阻碍了疏水性抗菌药进入菌体内。另外细菌外膜上还存在着多种孔蛋白,分子较大者为OmpF,分子较小者为OmpC,它们可形成特异性通道(OprD)和非特异性的通道(OprF),作为营养物质和亲水性抗菌药物的通道。抗菌药物分子越大,所带负电荷越多,疏水性越强,则不易通过细菌外膜。细菌发生突变失去某种特异孔蛋白后即可导致细菌耐药性,另外由于外膜蛋白OprF的缺失,使药物不易通过而产生耐药性。如铜绿假单胞菌特异性孔蛋白OprD2缺失即导致碳青霉烯类抗生素耐药。

另外一种导致细菌非特异性耐药的机制是细菌主动外排泵的存在,可以将进入细菌体内的药物泵出膜外,从而逃避抗生素的作用。主动外排系统由于能特异地将进入细胞内的多种抗菌药物主动泵出细胞外,导致细胞获得耐药性。如大肠埃希氏菌中的多药外排泵AcorAB-TolC系统可以导致细菌对包括四环素、氯霉素、红霉素、β—内酰胺类、利福平、氟喹诺酮类、氧化剂、有机溶剂、碱性染料等多种结构不相关的药物耐药。铜绿假单胞菌的MexAB-OprM系统的主动外排作用也是导致铜绿假单胞菌固有的多重耐药性的重要因素之一。

细菌的膜耐药机制主要表现在铜绿假单胞菌的多药耐药性。铜绿假单胞菌几乎囊括了包括膜耐药在内的所有细菌耐药机制,其耐药已成为当前感染治疗中较为棘手的问题之一,尤其值得重视和研究。

;

❺ 病原微生物中细菌常见检测方法有哪些

病原微生物中细菌常见检测方法有哪些

病原微生物种类繁多,变异迅速,快速鉴定病原微生物的检验技术也在不断发展前进着。目前,应用比较广泛的病原微生物检测方法主要有直接涂片镜检、分离培养、生化反应、血清学反应、核酸分子杂交、基因晶片、多聚酶链反应等,该文对这些检测技术进展做一综述。 对人和动物具有致病性的微生物称为病原微生物,又称病原体,有病毒、细菌、立克次体、支原体、衣原体、螺旋体、真菌、放线菌、朊粒等。这些病原微生物可引起感染、过敏、肿瘤、痴呆等疾病,也是危害食品安全的主要因素之一。近年来出现的SARS、高致病性禽流感、西尼罗病毒感染等疾病的传染性极强,往往造成世界性大流行,因此对病原体的检测必须做到快速、准确。常规病原学检测方法操作繁琐,检测周期长,而且对操作人员技术水平要求比较高。随着医学微生物学研究技术的不断发展,病原学诊断已不再局限于病原体水平,深入到分子水平、基因水平的检测手段不断出现并被应用于临床和实验室 J。核酸分子杂交技术、PCR技术、基因晶片技术等检测方法,自动化程度高,快速省时、无污染、结果精确,可以准确灵敏地鉴定病原微生物。1 传统的病原微生物的检测方法传统的病原微生物学实验室检查以染色、培养、生化鉴定等为主,将标本直接涂片染色镜检和接种在培养基上进行分离培养是对细菌或真菌感染性疾病进行病原学诊断的常用方法。1.1 直接涂片镜检病原微生物体形体积微小,大多无色半透明状,将其染色后可借助显微镜观察其大小、形态、排列等。直接涂片染色镜检简便快速,对那些具有特殊形态的病原微生物感染仍然适用,例如淋球菌感染、结核分枝杆菌、螺旋体感染等的早期初步诊断。直接涂片镜检不需要特殊的仪器和装置,在基层实验室里仍然是十分重要的病原微生物检测手段。1.2 分离培养与生化反应 分离培养主要用于临床标本(如血液、痰、粪便等)或培养物中有多种细菌时对某一种细菌的分离。细菌的生长繁殖需要一定时间,检测周期较长,不能同时处理批量样本。为解决这一问题,各种自动化培养和鉴定系统不断产生,传统鉴定方法也在逐步改进,大大加快了检验速度。例如Microscan WalLCAway全自动微生物分析仪,可同时做细菌鉴定和药敏试验,检验500多个菌种。苛养菌如肺炎链球菌、淋病奈瑟菌、流感嗜血杆菌等对营养要求比较高,常规培养阳性率低。雍刚 等将不要同比例的葡萄糖、玉米淀粉、生长因子、酵母粉、氨基酸等特殊增菌剂加入到巧克力培养基中制成了新型淋病奈瑟菌培养基,大大提高了淋病奈瑟菌的分离培养率。苏盛通等在营养琼脂中加人了中药红枣、赤小豆培养甲型链球菌、乙型链球菌、肺炎链球菌等细菌,生长指数明显高于血平板。1.3 组织细胞培养 活组织细胞培养适于专营活组织细胞内生存的病原体,包括病毒、立克次体、衣原体等。不同病原体敏感的组织细胞是不一样的,将活细胞从病原体敏感的动物组织中取出在体外进行原代培养或用病原体敏感细胞系进行传代培养,再将病原体接种于相应的组织细胞中后,病原体可在其中繁殖增长,引起特异性的细胞病变效应。也可以将病原体直接接种于敏感动物体内,引起相应组织器官出现特异的病理学改变。往往可以根据这些特异的病变对病原体进行鉴定。2 血清学与免疫学检测血清学检测是通过已知的抗体或抗原来检测病原体的抗原或抗体从而对病原体进行快速鉴定的技术,简化了鉴定步骤,常用的方法包括血清凝集技术、乳胶凝集实验、荧光抗体检测技术、协同凝集试验、酶联免疫测试技术等。酶联免疫技术的应用大大提高了血清学检测的敏感性和特异性,不仅可检测样本中病原体抗原,也可检测机体的抗体成分。幽门螺奸菌在我国人群感染率高达50% ~80% ,应用酶联免疫吸附法(ELISA)检测唾液中抗HP抗体来诊断HP感染,其结果满意。乙型肝炎病毒(HBV)在我国人群中感染率极高,ELISA应用于乙型肝炎病人早期血清学诊断的效果最为明显。临床上致病菌往往和非致病菌混合在一起,如何从这些细菌中分离出目标菌是关键。免疫磁珠分离技术(IMBS)是近年来发展起来的在微生物检测领域中一种新技术。其基本原理是将特定病原体的单抗或多抗或二抗偶联到磁珠微球上,通过抗原抗体反应形成磁珠一目标病原体复合物或磁珠一一抗一目标病原体复合物,在外部磁场磁力的作用下,将目标病原体分离出来。目前已经开发出了针对各种病原体的免疫磁珠,如大肠埃希菌、李斯特菌、白色念珠菌、军团菌等,广泛应用到各级科研和实验室 。经IMBS分离出的白色念珠菌可直接在显微镜下检测,检测时间缩短至4 h。IM—Bs还可以和其它检测技术联合来检测病原菌,免疫磁珠分离得到的目标菌可继续用于分离培养使大肠埃希菌0157最低检测限由200 cfu·g 提高到2 cfu·g~;IMBS结合聚合酶链反应(IMBS—PCR)可对培养条件比较特殊的细菌如苛养菌、厌氧菌进行快速检测,肉类中的产毒素型产气荚膜梭菌经IMBS.PCR检测

微生物的快速检测方法有哪些

目前主要普通培养(简称标)般报告要用仪器、核酸检测(PCR)、目前快速检测(主要包括:免疫磁珠、酶联免疫试剂盒、金标检测卡等根据自需求选择

食品微生物的检测方法有哪些?

目前主要有普通培养法(简称国标方法)一般出报告的要用,仪器法、核酸检测法(PCR)、还有目前的快速检测法(主要包括:免疫磁珠、酶联免疫试剂盒、金标检测卡等。这个根据自己的需求来选择吧。

简述hiv的微生物学检测方法有哪些

简述hiv的微生物学检测方法有哪些
梅毒是由苍白螺旋体感染引起的一种性传播性疾病 。梅毒螺旋体感染人体后出现两种抗体:一种是特异性抗体(TPHA),为lgM。当有补体存在和厌氧条件下,对活螺旋体的动力有抑制作用,并可将螺旋体杀死或溶解,对机体的再感染有保护作用。另一类是非特异性抗体(快速血浆反应素 RPR)。为lgA与lgM的混合物,可与正常生物组织中的类脂抗原发生非特异性结合,对人体无保护作用

微生物的传统检测方法有哪些?

传统检测有三种方法
1、直接显微镜观察,正常情况,在一定的培养条件下(相同的培养基、温度以及培养时间),同种微生物表现出稳定的菌落特征。可以通过显微镜观察菌落特征对微生物种类进行判断。

2、选择培养基培养微生物或人为提供有利于目的菌株生长的条件,选择培养基,其作用是允许特定种类的微生物生长,同时抑制或阻止其他微生物生长。选择培养一般是通过观察微生物的同化作用型别或某一特征进行间接判断,得到的微生物往往并不只有一种,但是能够大致确定这些微生物存在的共有特征从而对其分类。

3、鉴别培养基,根据微生物的代谢特点,在培养基中加入某种指示剂或化学药品。与选择培养相比,鉴别培养基的鉴别所得结果的范围比较小,一般可直接测定某微生物的种类。

现代定义

微生物:个体难以用肉眼观察的一切微小生物之统称。
微生物包括细菌、病毒、真菌、和少数藻类等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。)病毒是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。
根据存在的不同环境分为空间微生物、海洋微生物等,按照细胞机构分类分为原核微生物和真核微生物。

主要特征

1、体小面大
2、吸多转快
3、生长繁殖快

微生物的这一特性使其在工业上有广泛的应用,如发酵、单细胞蛋白等。微生物是人类不可或缺的好朋友。

水产品致病微生物检测方法有哪些

这个是我在网上找到的的微生物的检测试纸片,也不知道方法咋样,你要也可以去网站上看看的
像大肠杆菌测试纸片 肠出血性大肠杆菌O157:H7是一种新出现的食物传播性疾病的病因。它除了引起腹泻、出血性肠炎外,还可发生溶血性尿毒综合症、血栓性血小板减少性紫癜等严重的并发症。自1982年美国首次发现因该致病菌引起的食物中毒以来,肠出血性大肠杆菌O157:H7疫情开始逐渐扩散和蔓延,相继在英国、加拿大、日本等多个国家引起腹泻爆发和流行。我国已陆续有十余个省份在市售食品、进口食品、腹泻病患者、家畜家禽等分离到大肠杆菌O157:H7。大肠杆菌O157测试片(FilmplateTM E.coli O157BO204)3方元方圆生物的采用进口高选择性显色培养基作为主要原料,运用专有技术,做成一次性快速检验产品,一步培养15~24h就可确认,大大地简化了检测程式,非常适合各级检验部门和食品企业使用。本品适用于海产品、水产品、各类熟肉制品和冷荤、蛋及蛋制品等的快速检测。参照标准:食品卫生微生物学检验大肠埃希氏菌O157:H7/NM检验(GB/T4789.36)。

物体表面的微生物检测方法有哪些

; 用浸有灭菌生理盐水的棉签在被检物体表面取25cm2的面积,在其内涂抹10次,然后剪去手接触部分棉棒,将棉签放入含10mL灭菌生理盐水的取样管内送检。擦拭时棉签要随时转动,保证擦拭的准确性。对每个擦拭点应详细记录所在分场的具 *** 置、擦拭时间及所擦拭环节的消毒时间

牛奶中细菌检测方法有哪些

先配制固体培养基,再划线培养1天,之后挑每一种菌落的细菌制片,显微镜下观察细菌的种类

❻ 分子生物学检验方法检测细菌耐药性的优势和不足有哪些

分子生物学检验方法检测细菌耐药性的优势和不足有哪些

优势:颤穗

1. 分子生物学检验方法比传统的微生物培养更加准确、快速,能够更快捷地检测细菌耐药性;

2. 分子生物学检验方法能够精确地识别和定位细菌耐药性的遗传标记,从而可以精确地调查细菌耐药性的抗药机制;

3. 分子生物学技术可以结合其他技术,如荧光定量PCR,以分析散顷细菌耐药性的分子机制,以便建立更有效的抗药策略;

4. 分子生物学技术可以用来识别细菌耐药性的新基因,帮助研究人员开发新型抗菌药物。

不足:

1. 由于分子生物学技术需要高精度的样品处理和分析,因此其价格更高,而且受到地域的限制;

2. 分子生物学技术依赖于抗原的可测性,目前尚不能检测到所有的细菌种类和抗药性;

3. 分子生物学技术的结果有可能受到操作的影响,因此需要专业的操作茄掘卜技能和设备;

4. 分子生物学技术的结果可能受到样品的类型和质量的影响,因此需要有严格的抽样和质控程序。

❼ 如何判断乙肝耐药性

这是一个复杂而十分专业、传染病学界热议的问题,目前所谓的耐药性问题,主要是针对核苷类抗病基核毒药而言,简单来说:
1。如果用药宽慎24周,病毒载量无明显下降(小于10的2次方),可以认为原发无应答,也可认为原发性耐药;
2。用药后病毒载量明显下降到测不到,在继续治疗过程中,病毒载量出现反弹,再次搏巧掘升高,可以伴或不伴有肝功能异常,这时可以认定为病毒已发生耐药;
3。如果有怀疑,可以作耐药基因测定,就可以测出病毒对哪种药物耐药。

❽ 细菌耐药性的检查属于哪一项实验室检查

细菌耐药性的检查属于哪一项实验室检查,细菌耐药性检测扮历方法一般包括涂片检测、细菌培养检测等。 细菌培养检测就是取标本在培养基上均匀分布, 然后培养细菌,继而型缺段可以通过显微镜的镜检判断是哪一种细菌。其次涂片检测是用痰液直接做成标本,通过显微镜检查来观察卜誉里面成分的成分的检查项目。

❾ 感染性疾病病原检查方法有哪些

感染(infection)是病原体(pathogen)和人体在一定条件下相互作用的病理过程,感染的病原体包括各种细菌、病毒、寄生虫、真菌、支原体、衣原体、螺旋体等。病原体的来源可分为外源性和内源性感染两种类型。外源性感染是由于外界的病原体侵入人体,如志贺菌、结核分枝杆菌、人免疫缺陷病毒(HIV)等引起的感染。内源性感染是人体内经常寄生的微生物,如大肠埃希菌、肠球菌、某些真菌等在一定条件下引起的感染。感染后是否引起感染性疾病(infection diseases)与病原体的数量、毒力和人体的抵抗力有关,并决定感染的发生、发展和结局。病原体感染后机体可以出现不感染、隐性感染(covert infection)、显性感染(overt infection)、持续性感染(persistent infection)或病原体携带状态(carrier state)几种类型。感染性疾病是由于感染的病原体毒力强、数量多,超过了机体的抵御能力,定植在机体一定部位增殖、扩散或蔓延、释放毒素,引起机体免疫病理反应,导致组织、器官等损伤,生理功能紊乱,并出现一系列的临床症状和体征。感染性疾病的检查主要包括病原体的检查、感染的血清学试验等,并由此确定感染性疾病的发生和性质;通过病原体的药物敏感试验、耐药株监测和医院感染的监测报告,为临床感染性疾病的最佳治疗药物选择,采取最有效的预防措施,防止感染的传播或流行提供及时、有效的实验数据。
随着现代社会与临床医学的发展,目前感染性疾病的流行病学特点发生了明显变化,主要体现在以下几个方面:①由强毒性病原体引起感染的疾病,如鼠疫、白喉、伤寒、天花、小儿麻痹逐渐减少或绝迹,而条件致病的病原体引起的感染、医院感染逐渐增多。②由新的病原体、原有的病原体变异引起的新感染性疾病,如艾滋病(AIDS)、疯牛病、O157出血性肠炎、严重急性呼吸综合征(severe acute respiratory syndrome, SARS)等陆续出现。③以前的感染性疾病,如淋病、梅毒、结核病等又重新流行。④多重耐药株,如耐万古霉素的肠球菌(VRE)、耐苯唑西林的葡萄球菌(MRS)、耐异烟肼的结核杆菌等,导致抗感染治疗无效或低效。因此,临床感染性疾病的检查应密切结合上述新的变化趋势进行。
细菌感染所致的感染性疾病占首位;病毒性感染在人群中的发生率最高,但不一定致病;真菌感染的发病率近年来显着上升;寄生虫,如隐孢子虫、卡氏肺孢子虫、滴虫等感染开始受到普遍关注。病原体的检查是临床确诊感染性疾病的主要手段,根据需要鉴定到一定水平即可。例如,作为临床病原学诊断,细菌感染只需鉴定到种,必要时才进一步鉴定;若进行流行病学调查,细菌鉴定应达到血清型或基因型。临床病原体检查必须通过采集标本,经过各种试验后才能明确诊断。标本采集质量的好坏直接影响诊断结果,早期采集、无菌采集、适当与适量采集是确保查明病原体的前提。临床病原体检查的方法有多种,包括涂片检查、分离培养、血清学鉴定和分子生物学诊断(molecular biological diagnosis)等,可根据临床需要和标本类型进行选择。临床标本分离培养的阳性结果最具确诊意义,但阴性结果并不能完全除外病原体感染的可能。病原体抗原成分检测可早期、快速诊断感染性疾病,阳性结果表明感染病原体的存在。分子生物学诊断为病原体感染的早期、快速、敏感、特异诊断成为可能,但应排除假阳性或假阴性结果。

❿ 请问非淋菌性尿道炎的症状是什么

非淋是指由淋菌以外的其它病原体,主要是沙眼衣原体、尿素分解支原体所引起的尿道炎。
非淋菌性尿道炎的症状:
当女性感染.性.病的病原体时,受感染的器官是宫颈,少数情况下才能感大野慎染尿道。宫颈被感染后,呈现出阴.道炎和宫颈炎,检查时发现,宫颈水肿、糜烂、白带增多,所以经常造成外.阴或引导瘙.痒。
预防的小方法
治疗期间不许饮酒。
性.伴侣如有感染应同时治疗。经治疗,病人的症状持续存在,或症状消失后又复发,最可能的原因是.性.伴侣未经治疗。
很多患者在治疗的过程中,用药不当导致产生耐药性,这时候就要选择病原体耐药性检测,在治滚敬疗的过程中选择最适合的药物
如果患者反复发作,应警惕并发症,如前列腺炎等,应做相应的细菌学查,并及时治疗
陈氏仁心之<三草消炎汤>,行使清除脾肾湿热的功能,将毒邪逼出脊空体外,同时增强气血运行,提升阳气,消灭体内残留的致病菌,从而消除排尿时疼痛、灼热、腰痛、尿道瘙痒等症状。

阅读全文

与病原体耐药性检测方法相关的资料

热点内容
404x125的简便运算方法 浏览:8
水泥多孔砖砌墙方法图片 浏览:705
孢谷草种植方法 浏览:283
莴笋青菜种植方法 浏览:736
前列腺增生怎么治疗方法 浏览:846
12伏蓄电池存电量计算方法 浏览:219
冲压工36技计算方法计算实例 浏览:858
骨化三醇免疫治疗方法 浏览:306
三联疗法如何服用方法 浏览:426
93乘43加91的简便方法 浏览:393
海螺吃了头晕有什么方法解决 浏览:812
如何写通项方法 浏览:674
小学生如何写作业快的方法 浏览:347
卫星手机夜景拍摄方法 浏览:97
怎么做瘦肚子最快方法 浏览:11
考场查词典技巧和方法 浏览:639
魔芋水的制作方法视频 浏览:493
同分母分数加减法教学方法分析 浏览:323
平焊单面焊双面成型的教学方法 浏览:601
查询电脑图片有多张的方法 浏览:429