导航:首页 > 解决方法 > 三角函数难题解决方法

三角函数难题解决方法

发布时间:2023-04-10 02:02:48

㈠ 求助:高中数学关于三角函数的难题

(1)sin2A=2sinAcosA sin2B=2sinBcosB
当2sinAcosA=2sinBcosB时,画一个单位圆,发现在一个三角形中,A、B可以是互余的锐角。所以,当罩困sin2A=sin2B时,△ABC也可以为直角三角形
(2)当有sinA=cosB时,可以出现的东西也要画一个单位圆,可知A+(π/2)=B也成立,所以(2)也错
(3)当有sin2A+sin2B+sin2C<2时,那就分着算:sin2A+sin2B=(0,2)这玩意用极值法能求出旅灶来的)可知C是小于等于零的,即C为钝角
(4)cos(A-B)cos(B-C)cos(C-A)=cos0当他们ABC差角拆闷扮只有一个不为零的话,其他的也不为零,得多少我不知道,但是我肯定:此时△ABC为正三角形,而且找不到其他的特例。

真够累的,建议使用更快的方法

㈡ 高中三角函数题目解法

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1B、最大值是1,最小值是- C、最大值是2,最小值是-2D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+ 当sin(2x+)=-1时,y取最小值2-,此时x的集合。3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1) (1) 若-a<-1时,即a>1时, 在t=-1时,取最大值M=a。(2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a。(3) 若-a>1,即a<-1时,在t=1时,取大值M=-3a。4.y=型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。 例4.求函数y=的最大值和最小值。 解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ)=, ∵ |sin(x+φ)|≤1,∴≤1,解出y的范围即可。 解法2:表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。 解法3:应用万能公式设t=tan(),则y=,即(2-3y)t2-2t+2-y=0,根据Δ≥0解出y的最值即可。 5.y=sinxcos2x型的函数。 它的凳备特点是关于sinx,cosx的三磨粗陵次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 例5.若x∈(0,π),求函数y=(1+cosx)·sin的最大值。 解:y=2cos2·sin>0, y2=4cos4sin2=2·cos2·cos2·2sin2所以0<y≤。注:本题的角和函数很难统瞎戚一,并且还会出现次数太高的问题。 6.含有sinx与cosx的和与积型的函数式。 其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数来求解
</A>

如何用三角函数解决一些实际问题

同角三角函数的基本关系
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α *cot α=1
一个特殊公式
(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/漏孝2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上清缺述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)
n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】答搜辩=0是同解方程。 所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式

(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

编辑本段内容规律
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质:
[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)
http://ke..com/view/959840.htm
网络中写得还蛮详细的,

㈣ 如何用三角函数解决实际问题

tana=sina/cosa,tanα=1/cotα

1、设α为任意角,终边相同的角的同一三侍亩角函数的值相等:tan(2kπ+α)=tanα

2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα

3、任意角α与-α的三角函数值之间的关系:tan(-α)=-tanα

4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα

5、利用公式老帆森一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα

例题解析:

正切函数图像的性质

定义域:{x|x≠(π/2)+kπ,k∈Z}

值域:R

奇偶性:有,为奇函数

周期性:有

最小正周期:kπ,k∈Z

单调性:有

单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z

单调减区间:无

六种基本函数

函数名:正弦函数余弦函数正切函数余切函数正割函数余割函数

正弦函数sinθ=y/r

余弦函数轿简cosθ=x/r

正切函数tanθ=y/x

余切函数cotθ=x/y

正割函数secθ=r/x

余割函数cscθ=r/y

㈤ 如何用三角函数解决问题。

特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与慧塌差的三角函数公式,可以求出一些其他角度的三角升敏函数值。

特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=根号3/2,tan30°=根号3/3;sin45°=根号2/2,cos45°=根号2/2,tan45°=1;sin60°=根号3/2,cos60°=1/2,tan60°=根号3;sin90°=1,cos90°=0。

单位圆定义:

也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。

但是单位圆定义的确允许前笑圆三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的方程是:对于圆上的任意点(x,y),x²+y²=1。

㈥ 关于高中三角函数的问题 尽快解决

sec csc念:塞克、柯塞克

六个关系有一个六角图你们老师没教吗?

sin平方 + cos平中老方 = 1
tan平方 + 1 = sec平方
cot平方 + 1 = csc平方
sin*csc=1
cos*sec=1
tan*cot=1
sin/cos=tan
cos/sin=cot

没别的灵丹银氏妙药,惟一方法就是把公式背熟练

不然后的倍角、半角什么乱七八糟的东西多了,你看得更头痛了。大学里的微积分你就更晕了,卖搏升呵呵~~~~~~~~~

㈦ 三角函数问题求解

这巧枯两个都是和差化积公式,是恒等式。从右向左推导,就可以了。
1.
2cos[(x1+x2)/大颤2]sin[(x1-x2)/2]
=sin[(x1-x2)/2]cos[(x1+x2)/2]+cos[(x1-x2)/2]sin[(x1+x2)/2]
+sin[(x1-x2)/2]cos[(x1+x2)/2]-cos[(x1-x2)/2]sin[(x1+x2)/2]
=sin[(x1-x2)/2 +(x1+x2)/2]+sin[(x1-x2)/2 -(x1+x2)/2]
=sin(2x1/2)+sin(-2x2/2)
=sinx1-sinx2
sinx1-sinx2=2cos[(x1+x2)/2]sin[(x1-x2)/2]
第2题推导采用滚宽败同样的方法推导即可。

㈧ 怎样用三角函数解决实际生活问题

y=sin(wx+φ)将wx+φ代入到标准正弦函数中去解。

wx+φ=π/2+kπ(不是2kπ) 解出x即得

cos 是wx+φ=0+kπ

对于运谨正弦型函数y=Asin(ωx+Φ),令ωx+Φ = kπ+ π/2 解出x即可求出对称轴,令ωx+Φ = kπ,解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )

余弦型,正切型函数类似。

(8)三角函数难题解决方法扩展阅读

在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。

对于大于碧老2π或小于等于2π的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为2π的周期函旁慧基数:对于任何角度θ和任何整数k。

周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。

㈨ 三角函数难题

化简一下 sinx^2+2-1=sinx^2+1,所以最大值为 2

阅读全文

与三角函数难题解决方法相关的资料

热点内容
哑铃不用绳子的锻炼方法 浏览:991
篮球传球跑位训练方法幼儿 浏览:177
棉花蓟马图片防治方法及危害 浏览:362
酒曲做米酒的方法步骤视频 浏览:273
消肚子肉吃什么最快的方法 浏览:138
冬草堆制作方法视频 浏览:973
打仗训练方法和技巧 浏览:685
50ppr管连接方法 浏览:416
四柱八字分析方法 浏览:483
电脑qq上麦克风在哪里设置方法 浏览:501
饭店防疫措施的最佳方法 浏览:133
软膏剂的定义及常用的制备方法 浏览:157
阿司匹林的检验与分析方法 浏览:780
较简单的计算方法 浏览:697
床尾插座安装方法 浏览:415
如何练好唱歌的发声方法 浏览:761
三线模拟空调压力传感器测量方法 浏览:836
火腿油脂的食用方法 浏览:559
无精子症的治疗方法 浏览:363
白翡翠手串鉴别最简单方法 浏览:66