导航:首页 > 解决方法 > 在线水质检测溶氧仪处理方法

在线水质检测溶氧仪处理方法

发布时间:2023-03-23 22:53:56

① 实验室怎么测水中的溶氧量谁会

如果你是中学生,你可以按照以上方法的...

测量水中溶氧量的方法,
一种是使用滴定法(称Winkler滴定法),系以Mn+2将氧固定成Mn(OH)2之褐色沈淀,再以硫代硫酸钠之量多寡,来表示水中溶氧量。
另一法则以溶氧量仪器法测试,即以薄膜电极法去测水中溶氧量。
还可以溶氧仪测定水样BOD5的方法.

水中溶氧量的测定方法和步骤:
一、水样的采集。必须用采水瓶采集水样,采水的方法如下:
1、将采水瓶沉入水底,提拉细绳使乳胶管从长玻璃管上端脱离,并轻轻拉直以便排出瓶中空气,这时,可见有气泡从水面冒出,到不见气泡冒出时说明采水瓶内已灌满池水,将采水瓶提出水面。
2、把乳胶管一端套在长玻璃管上,另一端插入水样瓶底部(125ml白色细口瓶),用虹吸法将采水瓶中的水倒入水样瓶中,满瓶之后要继续让水溢出,同时缓缓将乳胶管从水样瓶中提出,然后将瓶塞盖紧。
二、水样分析测定方法步骤
1、固定溶解氧:打开水样瓶瓶盖,滴入碱性碘化钾3~4滴、硫酸锰3~4滴。盖上瓶塞(瓶中不可有气泡)上下颠倒摇动后静置片刻,待瓶中沉淀降到中部后加浓硫酸3~4滴,盖上瓶塞再摇匀即可。
2、滴定分析:用量筒量取25ml酸化后的水样于三角瓶中,滴入淀粉2~3滴,水样呈兰色,用注射器抽取硫代硫酸钠于三角瓶中滴定,边滴边摇动三角瓶,当兰色变淡时将水样倒回量筒涮一下再倒回三角瓶继续滴定,直至兰色消失立刻停止滴定。此时看一下用掉硫代硫酸钠的毫升数就是水中溶解氧的毫克/升数。

② 水处理中有哪些指标可以在线监测在线监测仪器有哪些

水质在线监测参数及所用到仪器有:
一、COD/氨氮/总磷/总氮等参数在线监测仪
1、总氮水质在线监测仪:总氮指标的在线监测仪器
2、总磷水质在线监测仪:总磷指标的在线监测仪器
3、氨氮水质在线监测仪:氨氮指标的在线监测仪器
4、COD水质在线监测仪:化学需氧量指标的在线监测仪器
5、在线电导率仪:溶液中电导率值/TDS的连续监测
6、在线式总氯测定仪:余氯/总氯测量和自来水管网的余氯/总氯测量
7、在线式BOD测定仪:在线监测化学需氧量
8、在线式溶解氧仪:检测溶液中溶解氧仪值
二、重金属在线监测仪
1、砷在线水质分析仪:砷指标的在线监测仪器
2、六价铬在线水质分析仪:六价铬指标的在线监测仪器
3、总铬在线水质分析仪:总铬指标的在线监测仪器
4、铜在线水质分析仪:铜指标的在线监测仪器
5、汞在线水质分析仪:汞指标的在线监测仪器
6、锰在线水质分析仪:锰指标的在线监测仪器
7、锌在线水质分析仪:锌指标的在线监测仪器
三、微生物在线检测仪
1、在线总大肠杆菌自动监测仪:粪大肠菌群的测定
2、在线粪大肠杆菌检测仪:总大肠菌群、耐热(粪)大肠菌群和大肠埃希氏菌的测定

③ 请问,测定水中溶解氧的国标方法是什么

水质 溶解氧的测定 碘量法 GB 7489-87
本方法等效采用国际标准 ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由
于考虑到某些干扰而采用改进的温克勒(Winkler)法
1 范围
碘量法是测定水中溶解氧的基准方法 在没有干扰的情况下此方法适用于各种溶解氧
浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸
腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消
耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法
亚硝酸盐浓度不高于 15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉
如存在氧化物质或还原物质 需改进测定方法见第8 条
如存在能固定或消耗碘的悬浮物 本方法需按附录A 中叙述的方法改进后方可使用
2 原理
在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰
中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠
滴定法测定游离碘量
3 试剂
分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水
3.1 硫酸溶液
小心地把 500mL 浓硫酸(ñ 1.84g/mL)在不停搅动下加入到500mL 水
注 若怀疑有三价铁的存在则采用磷酸(H3PO4 ñ 1.70g/mL)
3.2 硫酸溶液c(1/2H2SO4) 2mol/L
3.3 碱性碘化物 叠氮化物试剂
注 当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的
干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去
此试剂
a. 操作过程中严防中毒
b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾
将35g的氢氧化钠(NaOH)[或59g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)]
溶解在大约50mL 水中
单独地将 1g 的叠氮化钠(NaN3)溶于几毫升水中
将上述二种溶液混合并稀释至 100mL
溶液贮存在塞紧的细口棕色瓶子里
经稀释和酸化后 在有指示剂(3.7)存在下本试剂应无色
3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液)
可用 450g/L 四水二价氯化锰溶液代替
过滤不澄清的溶液
3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液
在 180 干燥数克碘酸钾(KIO3) 称量3.567 0.003g 溶解在水中并稀释到1000mL
将上述溶液吸取 100mL 移入1000mL 容量瓶中用水稀释至标线
3.6 硫代硫酸钠标准滴定液c(Na2S2O3) 10mmol/L
3.6.1 配制
将 2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并
稀释至1000mL
溶液贮存于深色玻璃瓶中
3.6.2 标定
在锥形瓶中用 100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL
2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即
用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再
滴定至完全无色
硫代硫酸钠浓度(c mmol/L)由式(1)求出
= 6´ 20´1.66¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼ 1
V
c
式中 V 硫代硫酸钠溶液滴定量mL
每日标定一次溶液
3.7 淀粉新配制10g/L 溶液
注 也可用其他适合的指示剂
3.8 酚酞1g/L 乙醇溶液
3.9 碘约0.005mol/L 溶液
溶解 4~5g 的碘化钾或碘化钠于少量水中加约130mg 的碘待碘溶解后稀释至100mL
3.10 碘化钾或碘化钠
4 仪器
除常用试验室设备外 还有
4.1 细口玻璃瓶容量在250~300mL 之间校准至1mL 具塞温克勒瓶或任何其他适合的
细口瓶瓶肩最好是直的每一个瓶和盖要有相同的号码用称量法来测定每个细口瓶的体

5 操作步骤
5.1 当存在能固定或消耗碘的悬浮物或者怀疑有这类物质存在时按附录A 叙述的方法测
定或最好采用电化学探头法测定溶解氧
5.2 检验氧化或还原物质是否存在
如果预计氧化或还原剂可能干扰结果时 取50mL 待测水加2 滴酚酞溶液(3.8)后中
和水样加0.5mL 硫酸溶液(3.2) 几粒碘化钾或碘化钠(3.10)(质量约0.5g)和几滴指示剂溶液
(3.7)
如果溶液呈蓝色 则有氧化物质存在如果溶液保持无色加0.2mL 碘溶液(3.9) 振荡
放置30s 如果没有呈蓝色则存在还原物质进一步加碘溶液可以估计8.2.3 中次氯酸钠溶
液的加入量
有氧化物质存在时 按照8.1 中规定处理有还原物质存在时按照8.2 中规定处理没
有氧化或还原物时按照5.3 5.4 5.5 中规定处理
5.3 样品的采集
除非还要作其他处理 样品应采集在细口瓶中(4.1) 测定就在瓶内进行试样充满全部
细口瓶
注 在有氧化或还原物的情况下需取二个试样(见8.1.2.1 和8.2.3.1).
5.3.1 取地表水样
充满细口瓶至溢流 小心避免溶解氧浓度的改变对浅水用电化学探头法更好些
在消除附着在玻璃瓶上的气泡之后 立即固定溶解氧(见5.4)
5.3. 2 从配水系统管路中取水样
将一惰性材料管的入口与管道连接 将管子出口插入细口瓶的底部(4.1)
用溢流冲洗的方式充入大约 10 倍细口瓶体积的水最后注满瓶子在消除附着在玻璃瓶
上的空气泡之后立即固定溶解氧(见5.4)
5.3.3 不同深度取水样
用一种特别的取样器 内盛细口瓶(4.1) 瓶上装有橡胶入口管并插入到细口瓶的底部
(4.1)
当溶液充满细口瓶时将瓶中空气排出 避免溢流某些类型的取样器可以同时充满几个
细口瓶
5.4 溶解氧的固定
取样之后 最好在现场立即向盛有样品的细口瓶中加1mL 二价硫酸锰溶液(3.4)和2mL
碱性试剂(3.3) 使用细尖头的移液管将试剂加到液面以下小心盖上塞子避免把空气泡
带入
若用其他装置必须小心保证样品氧含量不变
将细口瓶上下颠倒转动几次 使瓶内的成分充分混合静置沉淀最少5min 然后再重新
颠倒混合保证混合均匀这时可以将细口瓶运送至实验室
若避光保存 样品最长贮藏24h
5.5 游离碘
确保所形成的沉淀物已沉降在细口瓶下三分之一部分
慢速加入 1.5mL 硫酸溶液(3.1)[或相应体积的磷酸溶液(见3.1 注)] 盖上细口瓶盖然后
摇动瓶子要求瓶中沉淀物完全溶解并且碘已均匀分布
注 若直接在细口瓶内进行滴定小心地虹吸出上部分相应于所加酸溶液容积的澄清液而不扰动底
部沉淀物
5.6 滴定
将细口瓶内的组分或其部分体积(V1)转移到锥形瓶内用硫代硫酸钠(3.6)滴定在接近滴
定终点时加淀粉溶液(3.7)或者加其他合适的指示剂
6 结果计算
溶解氧含量 c1(mg/L)由式(2)求出:
C1=Mr*V2*C*f1/(4V1)
式中 Mr—— 氧的分子量Mr=32
V1 ——滴定时样品的体积mL 一般取V1 100mL 若滴定细口瓶内试样则V1=V0
c ——硫代硫酸钠溶液(3.6)的实际浓度mol/L
f1=V0/(V0-V')
式中 V0—— 细口瓶(4.1)的体积mL
V' ——二价硫酸锰溶液(3.4)(1mL)和碱性试剂(3.3)(2mL)体积的总和结果取一位小数。
7 精密度
分别在四个实验室内 自由度为10 对空气饱合的水(范围在8.5~9mg/L)进行了重复测定
得到溶解氧的批内标准差在0.03~0.05mg/L 之间
8 特殊情况
8.1 存在氧化性物质
8.1.1 原理
通过滴定第二个试验样品来测定除溶解氧以外的氧化性物质的含量以修正第6 条中得
到的结果
8.1.2 步骤
8.1.2.1 按照5.3 中规定取二个试验样品
8.1.2.2 按照5.4 5.5 5.6 中规定的步骤测定第一个试样中的溶解氧。
8.1.2.3 将第二个试样定量转移至大小适宜的锥形瓶内加1.5mL 硫酸溶液(3.1)[或相应体积
的磷酸溶液(见3.1 注)] 然后再加2mL 碱性试剂(3.3)和1mL 二价硫酸锰溶液(3.4) 放置5min
用硫代硫酸钠(3.6)滴定在滴定快到终点时加淀粉(3.7)或其他合适的指示剂
8.1.3 结果计算
溶解氧含量 c2(mg/L)由式(4)给出:
C2=MrV2*C*f/(4v1)-MrV4C/(4V3)
式中 Mr V1 V2 c 和f1 与第6 条中含义相同
V3 ——盛第二个试样的细口瓶体积mL
V4 ——滴定第二个试样用去的硫代硫酸钠的溶液(3.6)的体积mL
8.2 存在还原性物质
8.2.1 原理
加入过量次氯酸钠溶液 氧化第一和第二个试样中的还原性物质测定一个试样中的溶
解氧含量测定另一个试样中过剩的次氯酸钠量
8.2.2 试剂
在第三条中规定的试剂和
8.2.2.1 次氯酸钠溶液约含游离氯4g/L 用稀释市售浓次氯酸钠溶液的办法制备用碘量
法测定溶液的浓度
8.2.3 操作步骤
8.2.3.1 按照5.3 中规定取二个试样
8.2.3.2 向这二个试样中各加入1.00mL(若需要可加入更多的准确体积)的次氯酸钠溶液
(8.2.2.1)(见5.2 注) 盖好细口瓶盖混合均匀
一个试样按 5.4 5.5 和5.6 中的规定进行处理另一个按照8.1.2.3 的规定进行
8.2.4 结果计算
溶解氧的含量 c3(mg/L)由式(5)给出
C3=Mr*V2*C*f2/(4*V1)-Mr*V4*C/[4(V3-V5)]
式中 Mr V1 V2 和c 与第6 条含义相同
V3 和V4 与8.1.3 含义相同
V5 加入到试样中次氯酸钠溶液的体积mL(通常V5 1.00mL);
f2=V0/(V0-V5-V')
式中 V'与第6 条含义相同
V0 ——盛第一个试验样品的细口瓶的体积mL
9 试验报告
试验报告包括下列内容
a. 参考了本国家标准
b. 对样品的精确鉴别
c. 结果和所用的表示方法
d. 环境温度和大气压力
e. 测定期间注意到的特殊细节
f. 本方法没有规定的或考虑可任选的操作细节。

④ 请叙述电极式溶解氧分析仪的校正校正方法

电极式溶解氧分析仪校正方法如下:
1、用校正液校准
在国家环境保护行业标准HJ/T 99-2003《溶解氧(DO)水质自动分析仪技术要求》中,推荐的校准方法和步骤如下。
① 校正液的配制。
零点校正液:将约25g的无水Na2SO3溶于蒸馏水中,加蒸馏水至500mL。使用时配制。
量程校正液:在(25±0. 5 )℃下,以约1L/min的流量将空气通入蒸馏水[应该把盛蒸馏水的容器放在(25±0. 5)℃的水浴中],并使其中的溶解氧达到饱和,静置一段时间后使溶解氧达到稳定(通常,200mL水需要5~10min; 500mL水需要10~20min)。
说明:溶解氧的浓度随大气压的变化而不同,所以采用大气压补偿。另外,在测定高盐度试样时,在配制溶解氧饱和水时,应根据试样中盐类的摩尔浓度添加NaCl试剂。
②校正。
零点校正:将电极浸入零点校正液,将指示值调整为零点。
量程校正:将电极浸入量程校正液,在用磁搅拌器搅拌的同时,待显示值稳定后,测定量程校正液的温度(准确至±1℃),根据饱和溶解氧浓度值调整显示值。
说明:显示值一般随试样的流速变化而变化,因此搅拌速度应按照生产商规定的方法,使电极表面的液体流速保持恒定。
调节:交替进行零点校正和量程校正操作,调节分析仪直至校正液的测定值与显示值之差在±0.25mg/L以内为止。
2、 在空气中校准
这种方法简便易行,是某些仪表使用说明书中推荐的方法。注意在取出传感器探头置于空气中进行校准前,先要用脱盐水将其清洗干净,再用滤纸吸干表面水分。
对于μg/L级微量溶解氧分析来说,这种校准方法准确度低,不宜采用。
3、用被测介质来做校准
这种校准方法主要用于生物发酵过程。在消毒完成后,向未接种的介质中充入洁净的压缩空气,使介质中的溶解氧达到饱和状态,然后用传感器来校准100%浓度,再用百分比浓度来检测和控制整个发酵过程。

⑤ 水中溶解氧的测定一般用什么方法

一般有三种方法:碘量法,叠氮化钠修正法,膜电极法。

⑥ 水中溶氧检测

摘 要:本文综述了水体溶解氧的各种检测方法及原理,诸如碘量法、电流测定法(Clark溶氧电极)、电导测定法、荧光淬灭法等,比较各种方法的优缺点,对荧光淬灭法的应用前景进行了初步探讨。
关键词:溶解氧、荧光淬灭、环境监测
0.引言
随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,我国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。其中,水中溶解氧含量是进行水质监测时的一项重要指标。
溶解氧(Dissolved Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值(9ppm),藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧(DO)消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标[2]。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。
1.水体溶解氧的各种检测方法及原理
1.1 碘量法(GB7489-87)(Iodometric)
碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰:
4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1)
2Mn(OH)2+O2 = 2H2MnO3↓ (2)
2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3)
加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘:
4KI+2H2SO4 = 4HI+2K2SO4 (4)
2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5)
再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为:
2Na2S2O3+I2 = Na2S4O6+4NaI (6)
设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a为滴定时所取水样体积(mL),DO可按下式计算[2]:
DO(mol/L)= (7)
在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。
1.2 电流测定法(Clark溶氧电极)
当需要测量受污染的地面水和工业废水时必须用修正的碘量法或电流测定法。电流测定法根据分子氧透过薄膜的扩散速率来测定水中溶解氧(DO)的含量。溶氧电极的薄膜只能透过气体,透过气体中的氧气扩散到电解液中,立即在阴极(正极)上发生还原反应:
O2+2H2O+4e à 4OH- (8)
在阳极(负极),如银-氯化银电极上发生氧化反应:
4Ag+4Cl- à 4AgCl+4e (9)
(8)式和(9)式产生的电流与氧气的浓度成正比,通过测定此电流就可以得到溶解氧(DO)的浓度。
电流测定法的测量速度比碘量法要快,操作简便,干扰少(不受水样色度、浊度及化学滴定法中干扰物质的影响),而且能够现场自动连续检测,但是由于它的透氧膜和电极比较容易老化,当水样中含藻类、硫化物、碳酸盐、油类等物质时,会使透氧膜堵塞或损坏,需要注意保护和及时更换,又由于它是依靠电极本身在氧的作用下发生氧化还原反应来测定氧浓度的特性,测定过程中需要消耗氧气,所以在测量过程中样品要不停地搅拌,一般速度要求至少为0.3m/s,且需要定期更换电解液,致使它的测量精度和响应时间都受到扩散因素的限制。目前市场上的仪器大多都是属于Clark电极类型,每隔一段时间要活化,透氧膜也要经常更换。张葭冬[7]对膜电极的精密度作了研究,用膜电极法测量溶解氧的标准偏差为0.41mg/L,变异系数5.37%,碘量法测量溶解氧的标准偏差为0.3mg/L,变异系数为4.81%。同碘量法做对比实验时,每个样品测定值绝对误差小于0.21mg/L,相对误差不超过2.77%,两种方法相对误差在-2.52%~2.77%之间。代表产品有美国YSI公司的系列便携式溶解氧测量仪,如YSI58型溶解氧测量仪,该仪器可高质量地完成实验室和野外环境的测试工件,操作简便携带方便。测量范围为0~20mg/L,精度为±0.03mg/L。
1.3 荧光猝灭法
荧光猝灭法的测定是基于氧分子对荧光物质的猝灭效应原理,根据试样溶液所发生的荧光的强度来测定试样溶液中荧光物质的含量。通过利用光纤传感器来实现光信号的传输,由于光纤传感器具有体积小、重量轻、电绝缘性好、无电火花、安全、抗电磁干扰、灵敏度高、便于利用现有光通信技术组成遥测网络等优点,对传统的传感器能起到扩展、提高的作用,在很多情况下能完成传统的传感器很难甚至不能完成的任务,因此非常适合于荧光的传输与检测。从80年代初起,人们已开始了探索应用于氧探头的荧光指示剂的工作。早期曾采用四烷基氨基乙烯为化学发光剂,但由于其在应用中对氧气的响应在12小时内逐渐衰减而很快被淘汰。芘、芘丁酸、氟蒽等是一类很好的氧指示剂〔8〕,如1984年Wolfbeis等报告了一种对氧气快速响应的荧光传感器,就是以芘丁酸为指示剂,固定于多孔玻璃。这种传感器的优点是响应速度快(可低于50ms),并有很好的稳定性。1989年,Philip等〔9〕将香豆素1、香豆素103、香豆素153三种荧光指示剂分别固定于有机高聚物XAD-4、XAD-8及硅胶三种支持基体中进行实验。从灵敏度、发射强度和稳定性几个方面进行比较,得出了香豆素102固定于XAD-4支持基体中是作为一种灵敏可逆的光纤氧传感器的中介的最佳选择的结论。使用这种荧光指示剂的光纤氧传感器的应用范围相当广泛。
后来过渡金属(Ru、Os、Re、Rh和Ir)的有机化合物以其特殊的性能受到关注,对光和热以及强酸强碱或有机溶剂等都非常稳定。一般选用金属钌铬合物作为荧光指示剂即分子探针。金属钌铬合物的荧光强度与氧分压存在一一对应的关系,激发态寿命长,不耗氧,自身的化学成份很稳定,在水中基本不溶解。钌铬合物的基态至激发态的金属配体电荷转移(MLCT)过程中,激发态的性质与配体结构有密切关系,通常随着配体共轭体系的增大,荧光强度增强,荧光寿命增大,例如在荧光指示剂中把苯基插入到钌的配位空轨道上,从而增强络合物的刚性,在这样的刚性结构介质中,钌的荧光寿命延长,而氧分子与钌络合物分子之间的碰撞猝灭机率提高,从而可增强氧传感膜对氧的灵敏度。目前的研究中,钌化合物的配体一般局限于2,2’-联吡啶、1,10-邻菲洛啉及其衍生物。Brian[10]在实验中比较了在不同pH值介质条件下制得的Ru(bpy)2+3与Ru(ph2phen)2+3两种不同涂料的传感器性能,结果显示在pH=7时Ru(ph2phen)2+3显示了更高的灵敏度。为延长敏感膜在水溶液中的工作寿命,较长时间保持其灵敏性,吕太平〔11〕等合成Ru(Ⅱ)与4,7-二苯基-1,10-邻菲洛啉的亲脂性衍生物生成的新的荧光试剂配合物Ru(I)[4,7-双(4’-丙苯基)-1,10-邻菲洛啉]2(ClO4)2和Ru(Ⅱ)[4,7-双(4’-庚苯基)-1,10-邻菲洛啉]3(ClO4)2。Kerry[12]等合成Ru(Ⅱ)[5-丙烯酰胺基-1,10-邻菲洛啉]3(ClO4)2。实验均发现随着配体碳链的增长,荧光试剂的憎水性增大,流失现象减少,可延长膜的使用寿命。Ignacy[13]等研究还发现极化后的[Ru(dpp)3Cl2]氧传感膜对氧具有更高的灵敏度。吸附在硅胶60上的钌(Ⅱ)络合物在蓝光的激发下发出既强烈又稳定的粉红色荧光,该荧光可以有效地被分子氧淬灭。
其检测原理是根据Stern-Vlomer的猝灭方程[14]:F0/F=1+Ksv[Q],其中F0为无氧水的荧光强度,F为待检测水样的荧光强度,Ksv为方程常数,[Q]为溶解氧浓度,根据实际测得的荧光强度F0、F及已知的Ksv,可计算出溶解氧的浓度[Q]。
实验证明这种检测方法克服了碘量法和电流测定法的不足,具有很好的光化学稳定性、重现性,无延迟,精度高,寿命长,可对水中溶解氧进行实时在线监测。其测量范围一般为0~20mg/L,精度一般≤1%,响应时间≤60s。
1.4 其他检测方法
电导测定法:用导电的金属铊或其他化合物与水中溶解氧(DO)反应生成能导电的铊离子。通过测定水样中电导率的增量,就能求得溶解氧(DO)的浓度。实验表明,每增加0.035S/cm的电导率相当于1mg/L的溶解氧(DO)。此方法是测定溶解氧(DO)最灵敏的方法之一,可连续监测。
阳极溶出伏安法:同样利用金属铊与溶解氧(DO)定量反应生成亚铊离子:
4Tl+O2+2H2Oà4Tl++4OH- (10)
然后用溶出法测定Tl+离子的浓度,从而间接求得溶解氧(DO)的浓度。使用该方法取样量少,灵敏度高,而且受温度影响不大。
2.国内外在水体溶解氧检测领域研究的现状
我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作环节复杂,导致检测时间长,不能及时得到水质情况。国内目前一些单位和研究机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷磁仪器厂生产的JPSJ-605型溶解氧分析仪,北京北斗星工业化学研究所研制的H-BD5W手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差距;国内对荧光溶解氧传感器也有一些研究[5][15],技术已经达到国外平均水平,但研究实现商品化的较少。国外一般采用新型的基于荧光淬灭效应的溶解氧测量仪[16],代表产品有瑞士DMP公司的MICROXI型的溶解氧测量仪,美国OXYMON氧气测量系统等等,测量精确,快速,并可以远程测量等。总的来说,目前市场上大多数商品化溶解氧测量仪都是基于Clark溶氧电极的,基于荧光淬灭法的光纤溶解氧传感器较少。
我国环境监测、监控技术在环境领域的应用等方面的研究与发达国家相比还存在显着差距。目前国内在水质监测系统上还没有自己开发的完整的设备,大多数采用国外的设备和技术,如ECOTECH公司的WQMS(水质监测系统),美国SIGMA900系列水质采样器等等,但是国外的水质检测设备和系统大多数价格高,体积大,有的不完全符合中国的环境条件。据海关统计,2000年我国进口各类仪器仪表总额70亿美元,接近我国仪器仪表工业总产值的50%。全国每年用于仪器仪表进口的费用大大超过用于购买国产仪器的费用,价格昂贵、采购周期长以及各种配件难以获得等原因,严重地约束了我国科学技术的发展[1]。因此我国急需研究开发自行生产的环境水质自动监测仪器。

3.小结
目前国际上发展的主流是基于荧光淬灭原理的光纤溶解氧传感器,仪器的性能一般为:重复性误差±0.3㎎/L,零点漂移和量程漂移±0.3㎎/L,响应时间(T90)≤2min,温度补偿精度±0.3㎎/L,MTBF≥720h/次。根据上述荧光淬灭的特性,拟使用如下方法实现溶解氧检测仪:光源发出的光信号经滤光片送到有荧光指示剂的区域,水中溶解氧与荧光指示剂相作用,引起光的强度、波长、频率、相位、偏振态等光学特征发生变化后送到光探测器和信号处理装置,得到溶解氧浓度的信息。为了防止污染物、水体生物的腐蚀、干扰,仪器的抗干扰能力是关键。应该从传感膜的化学稳定性,仪器的防腐蚀性能,电路的工作稳定性方面多加以研究。
鉴于基于荧光淬灭法测量仪的光纤传感器具有较高的测量精度和较强的抗干扰能力,以及较好的重复性和稳定性,可以用于农业中水产养殖业水质的测量以及各种农业用水污染程度的测量,因此对此种传感器的研究具有重要的实际应用价值和商品化价值。

⑦ 北京利达科信环境安全有限公司的KS2202型化学需氧量(CODcr)水质在线监测仪的操作手册

系统概述:

水样、重铬酸钾、硫酸银和浓硫酸的混合液在消解池中被加热到175℃,在此期间铬离子作为氧化剂从VI价被还原成III价而改变了颜色,颜色的改变度与样品中有机化合物的含量成对应关系,仪器通过比色换算直接将样品的COD显示出来。

工作原理:

水样、重铬酸钾消解溶液、硫酸银及浓硫酸的混合液加热到175℃,重铬酸离子氧化溶液中的有机物后颜色会发生变化,分析仪检测此颜色的变化,并把这种变化换算成COD值。

系统特点:

1.测试前仪器自动抽取新鲜样品清洗管路、定量池、消解池,确保测试具有代表性。

2.光学定量系统:高精度定量样品/ 试剂体积,分析结果更加可靠。

3.开放槽式吹气使样品与试剂完全混合,反应更加完全。

4.全新的活塞泵技术,避免了传统蠕动泵的所有弊端:不与试剂和样品直接接触,仪器维护。

5.量减少,使用寿命延长,可靠性得到了大幅度的提升。

6.测试完成后仪器自动启动快速冷却系统,并迅速排空管路,减小了测试间隔。

7.无易损件,故障率低,运行费用低。

8.多向阀组件:完全国产及自主设计,达到国外多位电磁阀组件功能。

9.计量组件:由红外光电精确计量,克服蠕动泵泵管因磨损引起的取样误差。

10.进样组件:蠕动泵负压吸入,避免了泵管与酸碱的接触腐蚀。

技术参数:

测试方法:重铬酸钾高温消解,比色测定

测试范围:量程0(0-2000);量程1(0-5000),量程2(0-50000)其他可以扩展

分 辨 率:<0.1mg/l

准 确 度:不超过±10%

重 复 性:不超过±10%

测试周期:最小测量周期为30分钟,据实际水样,可在5~120min任意修改消解时间

校准周期:1~99天任意间隔任意时刻可调

采样周期:时间间隔(1~9999min任意可调)和整点测量模式

用户保养:保养间隔>1 个月,每月约1 小时

试剂消耗:约1 个月(试剂和标准液)

自我监测:自我监测泄漏;仪器状态自我诊断

模拟输出:2 路0/4~20mA

继电器控制:2 路24V 1A 继电器高低点控制

服务接口:RS232

可选配BUS:MODBUS RS485,Profibus DP

显 示:大屏幕LCD 图表显示,240*128

操作菜单:中文/ 英文

数据存储:2,000 组

典型应用:工业污水、生活废水

样 品 PH:1~12

消解温度:175℃

工作温度:+ 5℃~+40℃

电 源:AC230±10%V,50±1%Hz,5A

阅读全文

与在线水质检测溶氧仪处理方法相关的资料

热点内容
如何改善羊水少的方法 浏览:533
ssww浴缸使用方法 浏览:775
毛衣分针计算方法 浏览:315
远程红点训练方法 浏览:405
疑难杂症的治疗方法 浏览:729
汽车镀膜蜡的使用方法 浏览:669
幽门螺菌治疗方法 浏览:362
拉杆上篮锻炼方法 浏览:972
陀螺细胞常用的染色方法 浏览:762
错误3014解决方法 浏览:214
肉粽的食品食用方法 浏览:880
芒果汁的制作方法视频 浏览:785
故障处理方法有哪些 浏览:839
门窗铝材安装方法 浏览:996
牛肉如何做好吃的方法 浏览:2
治疗骨刺的土方法如下 浏览:171
女生后背长痘痘的解决方法 浏览:373
家里喝咖啡有哪些方法 浏览:999
摆摊最难研究的方法 浏览:848
短棍的使用方法 浏览:108