Ⅰ 筛分法测定颗粒物粒径分布
筛分法测定颗粒物粒径分布原理及优缺点如下:
1、原理:筛分法是颗粒粒径测量中为通用也为直观的方法。 筛分的实现非常简单: 根据不同的需要, 选择一系列不同筛孔直径的标准筛, 按照孔径从小到大依次摞起。
然后固定在振筛机上,选择适当的模式及时长,自动振动即可实现筛分; 筛分完成后,通过称重的方式记录下每层标准筛中得到的颗粒质量,并由此求得以质量分数表示的颗粒粒度分布。
筛分介绍
筛分是粉体积和微体积粒度分布分析的最传统的方法之一。当筛分使用编织筛面时,它基本上是以颗粒的中值粒径将它们分类的(也就是阔度和宽度)。
当大部分颗粒的粒径大于75u时,颗粒的重力不足以克服表面的吸附力和凝聚力,这就会使颗粒团聚在一起,以及粘着在筛面上,从而造成原本可以通过筛面的颗粒保留下来。
Ⅱ 粒度分析方法
粒度分析方法视碎屑岩颗粒大小和岩石致密程度而异。
1.砾岩的粒度分析方法
砾岩的粒度分析主要在野外进行,一般采用筛析和直接测量两种方法。对胶结不太坚固的砾石和疏松的砾石层,先用孔径为10 mm和1 mm的筛子过筛,小于1 mm的基质和胶结物,可带回室内进行再细分;10~1 mm的细砾部分若是含量多且差异大者,要用筛析方法进行细分;10 mm以上的砾石,一般在野外用尺子直接测量,然后将各粒级的砾石分别称重,记录于粒度分析表中。采样过程中应选择有代表性的取样地点,而且样品质量不少于25~30 kg,否则误差就会相当大。对于胶结坚固的砾岩,可在风化带上进行粒度测量;或采标本回室内,先进行胶结处理,将砾石分开,再进行粒度测量。
2.砂岩和粉砂岩的粒度分析方法
砂岩和粉砂岩的粒度分析常采用筛析法、沉速法和薄片法,常用的沉速法有阿兹尼法、沙巴宁法和罗宾逊法等。筛析法和沉速法适用于未固结的疏松岩石,如粗碎屑岩一般只用筛析法;而中—细粒碎屑岩由于常常含有较多的粉砂和黏土,常将沉速法与筛析法结合使用。薄片法主要用于固结坚硬的岩石。一般来说,筛析法适用于大于0.25 mm的颗粒,亦可用于大于0.1 mm的颗粒,而沉速法适用于小于0.25 mm的颗粒。
3.颗粒粒级的划分
一般采用伍登-温德华标准,它是以毫米为单位的一种分类方案,后来克鲁宾(1934)提出了一种对数换算(表3-1),称其为Φ值:
沉积学原理
其中,D为颗粒直径。
表3-1 粒级划分标准对比表
4.薄片粒度分析
筛析法只适用于现代沉积的沙和古代固结疏松的砂岩,对不能松解的砂岩不再适用。固结的岩石,特别是硅质胶结岩石的粒度分析,只能在薄片内进行。薄片粒度分析的精度较筛析法差,因薄片内计算的颗粒比筛析的量少得多,同时分析速度慢,分析结果不能与筛析法直接对比。下面简单介绍一下薄片粒度分析的方法,薄片的制备与普通岩石薄片的制备方法相同,疏松的砂岩用胶浸煮后磨片。用作粒度分析的薄片要稍大些(3.0 cm×2.0 cm),尤其是粗粒砂岩,以便在薄片内可测量到足够的颗粒数。用作磨制薄片的标本,必须在所采集的岩层内是有代表性的。
(1)在薄片上测定粒度的方法
在薄片上采用什么方法选择欲测量的颗粒称为抽样方法,一般常用的系统抽样方法为点计法和线计法,此外,还有一种方法为带记法。
点计法 常用有网格的目镜进行测量,每一方格的边长应大于薄片中颗粒的最大视直径,应用机械台使薄片通过显微镜视域,测量网格结点所触遇的颗粒粒径(图3-1)。
线计法 用机械台在垂直目镜微尺的方向移动薄片,凡为十字丝竖丝触遇的颗粒都要测量。量完一行,平行横丝将薄片移动一定距离,再按上述方法测量,一直测到足够的颗粒为止。测线间隔要大于薄片内颗粒的最大视直径(图3-2)。
不同抽样方法所得出的结果不同,线计法测量时,与测线相交的颗粒的概率与测线垂直方向上的颗粒直
图3-1 薄片粒度分析的点计法
径成比例;点计法测量时,与点相遇的颗粒的概率与颗粒的可见表面积成比例。
带计法 将薄片放在机械台上,固定横坐标,使薄片垂直目镜微尺慢慢移动,凡是颗粒中心在目镜微尺一定读数之间的颗粒,都要按大小分类计数(图3-3)。这个带的宽度应等于或大于样品内颗粒的最大视直径。有人通过实验证明,带计法测得的结果最近似于样品内真正的粒度分布。
图3-2 薄片粒度分析的线计法
图3-3 薄片粒度分析的带计法
由于不同抽样方法所得的结果不能直接对比,因而不同的样品要用统计方法比较的话,必须在每个细节上使用同样的抽样方法和测定方法。最后,将测得结果填入薄片粒度统计表(表3-2)。
表3-2 薄片粒度统计表
(2)各种测定直径的对比与换算
用粒度资料解释沉积环境的工作开始于对现代沉积物的研究。对于古代岩石的沉积环境分析,也可借助于岩石粒度分析同现代沉积物粒度分析加以比较。
现代沉积物的粒度分析一般采用常规筛析法,所得结果为不同粒度的颗粒质量百分比。而古代岩石目前大部分只能用薄片分析法,所得结果为不同粒度的颗粒数百分比。两者不能直接对比,如果需要对比则必须进行换算。即使在同一方法中,也只能进行统计对比,绝不能进行单颗粒对比。
筛析直径与沉速分析直径之间,平均值偏差<0.1Φ,两种方法一般不经换算可以互相使用,但在精确研究工作中则必须换算。薄片分析视直径与筛析直径之间的偏差可达到0.25Φ或更大,在任何情况下均不可互用或直接对比。将视直径换算为筛析直径的方法很多,其中G.M.Friedman通过统计分析进行的线性回归换算较为简便、准确,任意粒度的回归换算方程为
沉积学原理
式中:D是换算后的筛析直径;d是薄片中测定的视长直径,均以Φ值计。经换算后,换算值同实际筛析值的平均直径最大偏差一般不超过0.25Φ,这个精度高于0.25Φ分组间隔,可满足一般沉积学研究。
对于切片视直径与真直径的对比,根据实验可知,等直径的球状集合体的切面上所测得的视直径平均值为真直径的0.765倍,即在颗粒集合体的切片中,颗粒视直径平均值小于真直径,这种现象称为切片效应。
(3)薄片粒度测量的要求
粒度测量是粒度分析的基础,故对其测量要求很高,而测量工作却非常烦琐、效率很低。薄片粒度分析是研究固结样品的唯一方法,可使用偏光显微镜和扫描电子显微镜。近年来出现的图像分析仪使薄片粒度分析基本实现自动化,效率大为提高。薄片统计数据为颗粒数。
在沉积环境研究中使用薄片粒度分析时,对岩石样品的基本要求是:砂岩中石英碎屑含量应大于70%,至少石英和长石含量要大于70%,溶蚀交代与次生加大现象越弱越好,切片方向可垂直层面或平行层面,随研究目的和要求的精度而定。在碳酸盐岩研究中,取样密度可达1 点/cm,可平行纹层切片。测定时一般采用线计法抽取颗粒,凡在线上的颗粒都要测量,不能有任何主观取舍,每个薄片计200~500颗粒即可,碳酸盐岩需测1000颗粒以上。
在薄片内,需要测定多少颗粒才能代表全薄片的粒度分布,这在开始分析之前必须确定。测定的颗粒太少,不能代表薄片内的粒度分布;测定的颗粒太多,又会浪费时间,而且对精确度无所增益。根据砂岩样品的实验,分别测量100、200、300、400、500颗粒,绘制粒度累积频率曲线,从计数400颗粒起,粒度累积曲线的形状基本保持不变,因而可确定薄片内计数400~500颗粒是达到精度要求的最小计数。
薄片分析视直径换算成筛析直径时,还要考虑“杂基”的存在。薄片分析若不做杂基校正,往往无悬浮总体尾端,而是跳跃总体直接穿过3~4Φ的截点呈直线延伸,不出现转折,在平均值小于2Φ的中细砂岩、粉砂岩中经常出现这种情况,这是因为4~7Φ的颗粒细小,被测机会增多,或者全被归并到4.5Φ或5Φ的颗粒而造成细粒数增加,实质上是一种统计截尾效应(截尾点不同,其分布也不同)(图3-4)。
图3-4 截尾效应
杂基校正的方法是将显微镜调至6Φ后测定或估计出杂基含量。薄片杂基量由于切片效应和成岩后生作用,值一般偏高,取其2/3~1/2为校正值,假定为Δ,将各累积频率乘以(100—Δ),重新绘一曲线。对于弱固结岩石,可用同一标本既做筛析,又做薄片分析,通过实验求出校正系数(100—Δ)的数值。
Ⅲ 纳米材料粒度测试方法大全
纳米材料是指三维空间尺寸中至少有一维处于纳米数量级 (1~100 nm),或由纳米结构单元组成的具有特殊性质的材料,被誉为“21世纪最重要的战略性高技术材料之一”。当材料的粒度大小达到纳米尺度时,将具有传统微米级尺度材料所不具备的小尺寸效应、量子尺寸效应、表面效应等诸多特性,这些特异效应将为新材料的开发应用提供崭新思路。
目前,纳米材料已成为材料研发以及产业化最基本的构成部分,其中纳米材料的粒度则是其最重要的表征参数之一。本文根据不同的测试原理阐述了8种纳米材料粒度测试方法,并分析了不同粒度测试方法的优缺点及适用范围。
1.电子显微镜法
电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法, 一般包括扫描电子显微镜法(SEM) 和透射电子显微镜法(TEM)。对于很小的颗粒粒径, 特别是仅由几个原子组成的团簇,采用扫描隧道电镜进行测量。计算电镜所测量的粒度主要采用交叉法、最大交叉长度平均值法、粒径分布图法等。
优点: 该方法是一种颗粒度观测的绝对方法, 因而具有可靠性和直观性。
缺点: 测量结果缺乏整体统计性;滴样前必须做超声波分散;对一些不耐强电子束轰击的纳米颗粒样品较难得到准确的结果。
2.激光粒度分析法
激光粒度分析法是基于Fraunhofer衍射和Mie氏散射理论,根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。因此相应的激光粒度分析仪分为激光衍射式和激光动态散射式两类。一般衍射式粒度仪适于对粒度在5μm以上的样品分析,而动态激光散射仪则对粒度在5μm以下的纳米、亚微米颗粒样品分析较为准确。所以纳米粒子的测量一般采用动态激光散射仪。
优点: 样品用量少、自动化程度高、重复性好, 可在线分析等。
缺点: 不能分析高浓度的粒度及粒度分布,分析过程中需要稀释,从而带来一定误差。
3.动态光散射法
动态光散射也称光子相关光谱,是通过测量样品散射光强度的起伏变化得出样品的平均粒径及粒径分布。液体中纳米粒子以布朗运动为主,其运动速度取决于粒径、温度和黏度系数等因素。在恒定温度和黏度条件下, 通过光子相关谱法测定颗粒的扩散系数就可获得颗粒的粒度分布,其适用于工业化产品粒径的检测,测量粒径范围为1nm~5μm的悬浮液。
优点: 速度快,可获得精确的粒径分布。
缺点: 结果受样品的粒度大小以及分布影响较大, 只适用于测量粒度分布较窄的颗粒样品;测试中应不发生明显的团聚和快速沉降现象。
4.X射线衍射线宽法(XRD)
XRD测量纳米材料晶粒大小的原理是当材料晶粒的尺寸为纳米尺度时,其衍射峰型发生相应的宽化,通过对宽化的峰型进行测定并利用Scherrer公式计算得到不同晶面的晶粒尺寸。对于具体的晶粒而言, 衍射hkl的面间距dhkl和晶面层数N的乘积就是晶粒在垂直于此晶面方向上的粒度Dhkl。试样中晶粒大小可采用Scherrer公式进行计算:
式中:λ-X射线波长;θ-布拉格角 (半衍射角) ;βhkl-衍射hkl的半峰宽。
优点: 可用于未知物的成分鉴定。
缺点: 灵敏度较低;定量分析的准确度不高;测得的晶粒大小不能判断晶粒之间是否发生紧密的团聚;需要注意样品中不能存在微观应力。
5.X射线小角散射法 (SAXS)
当X射线照到材料上时,如果材料内部存在纳米尺寸的密度不均匀区域,则会在入射X射线束的周围2°~5°的小角度范围内出现散射X射线。当材料的晶粒尺寸越细时,中心散射就越漫散,且这种现象与材料的晶粒内部结构无关。SAXS法通过测定中心的散射图谱就可以计算出材料的粒径分布。SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。
优点: 操作简单;对于单一材质的球形粉末, 该方法测量粒度有着很好的准确性。
缺点: 不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。
6.X射线光电子能谱法(XPS)
XPS法以X射线作为激发源,基于纳米材料表面被激发出来的电子所具有的特征能量分布(能谱)而对其表面元素进行分析,也称为化学分析光电子能谱(ESCA)。由于原子在某一特定轨道的结合能依赖于原子周围的化学环境,因而从X射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。
优点: 绝对灵敏度很高,在分析时所需的样品量很少。
缺点: 但相对灵敏度不高, 且对液体样品分析比较麻烦;影响X射线定量分析准确性的因素相当复杂。
7.扫描探针显微镜法(SPM)
SPM法是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术,尤以原子力显微镜 (AFM)为代表, 其不仅能直接观测纳米材料表面的形貌和结构, 还可对物质表面进行可控的局部加工。
优点: 在纳米材料测量和表征方面具有独特性优势。
缺点: 由于标准物质的缺少,在实际操作中缺乏实施性。
8.拉曼光谱法
拉曼光谱法低维纳米材料的首选方法。它基于拉曼效应的非弹性光散射分析技术, 是由激发光的光子与材料的晶格振动相互作用所产生的非弹性散射光谱, 可用来对材料进行指纹分析。拉曼频移与物质分子的转动和振动能级有关, 不同的物质产生不同的拉曼频移。拉曼频率特征可提供有价值的结构信息。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。
优点: 灵敏度高、不破坏样品、方便快速。
缺点: 不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;在进行傅里叶变换光谱分析时,常出现曲线的非线性问题等。
小结
纳米材料粒度的测试方法多种多样,但不同的测试方法对应的测量原理不同,因而不同测试方法之间不能进行横向比较。不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法,所以在实际检测时应综合考虑纳米材料的特性、测量目的、经济成本等多方面因素,确定最终选用的测试方法。
参考资料
1.汪瑞俊,《纳米材料粒度测试方法及标准化》;
2.谭和平等,《纳米材料的表征与测试方法》;
3.王书运,《纳米颗粒的测量与表征》。
Ⅳ 目前常采的粒度分析方法有哪些
测粒度分布的有:筛分法、沉降法、激光法、电感法(库尔特)。
测比表面积的有:空气透过法(没淘汰)、气体吸附法。
直观的有:(电子)显微镜法、全息照相法。
显微镜法(Micros)
SEM、TEM;1nm~5μm范围。
适合纳米材料的粒度大小和形貌分析。
沉降法(Sedimentation Size Analysis) 沉降法的原理是基于颗粒在悬浮体系时,颗粒本身重力(或所受离心力)、所受浮力和黏滞阻力三者平衡,并且黏滞力服从斯托克斯定律来实施测定的,此时颗粒在悬浮体系中以恒定速度沉降,且沉降速度与粒度大小的平方成正比。10nm~20μm的颗粒。
光散射法(Light Scattering)
激光衍射式粒度仪仅对粒度在5μm以上的样品分析较准确,而动态光散射粒度仪则对粒度在5μm以下的纳米样品分析准确。
激光光散射法可以测量20nm-3500μm的粒度分布,获得的是等效球体积分布,测量准确,速度快,代表性强,重复性好,适合混合物料的测量。
利用光子相干光谱方法可以测量1nm-3000nm范围的粒度分布,特别适合超细纳米材料的粒度分析研究。测量体积分布,准确性高,测量速度快,动态范围宽,可以研究分散体系的稳定性。其缺点是不适用于粒度分布宽的样品测定。
光散射粒度测试方法的特点
测量范围广,现在最先进的激光光散射粒度测试仪可以测量1nm~3000μm,基本满足了超细粉体技术的要
光散射力度测试远离示意图
求。
测定速度快,自动化程度高,操作简单。一般只需1~1.5min。
测量准确,重现性好。
可以获得粒度分布。
激光相干光谱粒度分析法
通过光子相关光谱(PCS)法,可以测量粒子的迁移速率。而液体中的纳米颗粒以布朗运动为主,其运动速度取决于粒径,温度和粘度等因素。在恒定的温度和粘度条件下,通过光子相关光谱(PCS)法测定颗粒的迁移速率就可以获得相应的颗粒粒度分布。
光子相关光谱(pcs)技术能够测量粒度度为纳米量级的悬浮物粒子,它在纳米材料,生物工程、药物学以及微生物领域有广泛的应用前景。
优点是可以提供颗粒大小,分布以及形状的数据。此外,一般测量颗粒的大小可以从1纳米到几个微米数量级。
并且给的是颗粒图像的直观数据,容易理解。但其缺点是样品制备过程会对结果产生严重影响,如样品制备的分散性,直接会影响电镜观察质量和分析结果。电镜取样量少,会产生取样过程的非代表性。
适合电镜法粒度分析的仪器主要有扫描电镜和透射电镜。普通扫描电镜的颗粒分辨率一般在6nm左右,场发射扫描电镜的分辨率可以达到0.5nm。
扫描电镜对纳米粉体样品可以进行溶液分散法制样,也可以直接进行干粉制样。对样品制备的要求比较低,但由于电镜对样品有求有一定的导电性能,因此,对于非导电性样品需要进行表面蒸镀导电层如表面蒸金,蒸碳等。一般颗粒在10纳米以下的样品比较不能蒸金,因为金颗粒的大小在8纳米左右,会产生干扰的,应采取蒸碳方式。
扫描电镜有很大的扫描范围,原则上从1nm到mm量级均可以用扫描电镜进行粒度分析。而对于透射电镜,由于需要电子束透过样品,因此,适用的粒度分析范围在1-300nm之间。
对于电镜法粒度分析还可以和电镜的其他技术连用,可以实现对颗粒成份和晶体结构的测定,这是其他粒度分析法不能实现的。
Ⅳ 粉体颗粒分布常用检测方法有哪些
大概有以下几种方法: 1、筛分法,这个通过查看筛余量,过筛率等来判断粉体粒度的分布,优点是成本低,缺点是只能给出点的粒径,不能给出全部粉体的粒度分布。 2、沉降法,一般是利用斯托克原理,通过悬浮液体客户的在重力作用下的沉降速度来判定颗粒的大小。可以给出粒度分布表等,但对于粒径较小的颗粒,沉降速度比较慢,测试耗时较多。 3、激光散射法,目前使用较多,比较适合测试粒度分布较宽的粉体,测试成本相对较高,仪器价格从国产的几万元到国外的几十万元不等。更多相关问题,可关注<粉体圈>网络
Ⅵ 粒度测试的基本方法
粒度测试的方法很多,据统计有上百种。目前常用的有沉降法、激光法、筛分法、图像法和电阻法五种,另外还有几种在特定行业和领域中常用的测试方法。 沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes 定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,所以在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。所以在实际应用过程中是通过测量不同时刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。那么光强的变化率与粒径之间的关系又是怎样的呢?比尔是律告诉我们:
设在T1、T2、T3、……Ti时刻测得一系列的光强值I1<I2<I3……<Ii,这些光强值对应的颗粒粒径为D1>D2>D3>……>Di,将这些光强值和粒径值代入式(5),再通过计算机处理就可以得到粒度分布了。 激光法是根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。由激光器的发生的激光,经扩束后成为一束直径为10mm左右的平行光。在没有颗粒的情况下该平行光通过富氏透镜后汇聚到后焦平面上。如下图所示:
当通过适当的方式将一定量的颗粒均匀地放置到平行光束中时,平行光将发生散现象。一部分光将与光轴成一定角度向外传播。如下图:
那么,散射现象与粒径之间有什么关系呢?理论和实验都证明:大颗粒引发的散射光的角度小,颗粒越小,散光与轴之间的角度就越大。这些不同角度的散射光通过富姓氏透镜后在焦平面上将形成一系列有不同半径的光环,由这些光环组成的明暗交替的光斑称为Airy斑。Airy斑中包含着丰富粒度信息,简单地理解就是半径大的光环对应着较小的粒径;半径小的光环对应着较大的粒径;不同半径的光环光的强弱,包含该粒径颗粒的数量信息。这样我们在焦平面上放置一系列的光电接收器,将由不同粒径颗粒散射的光信号转换成电信号,并传输到计算机中,通过米氏散理论对这些信号进行数学处理,就可以得到粒度分布了。 电阻法又叫库尔特法,是由美国一个叫库尔特的人发明的一种粒度测试方法。这种方法是根据颗粒在通过一个小微孔的瞬间,占据了小微孔中的部分空间而排开了小微孔中的导电液体,使小微孔两端的电阻发生变化的原理测试粒度分布的。小孔两端的电阻的大小与颗粒的体积成正比。当不同大小的粒径颗粒连续通过小微孔时,小微孔的两端将连续产生不同大小的电阻信号,通过计算机对这些电阻信号进行处理就可以得到粒度分布了。如图所示:
用库尔特法进行粒度测试所用的介质通常是导电性能较好的生理盐水。 光阻法(Light Blockage),又称为光障碍法或光遮挡法,是利用微粒对光的遮挡所发生的光强度变化进行微粒粒径检测的方法,检测范围从1μm到2.5mm。
工作原理:当液体中的微粒通过一窄小的检测区时,与液体流向垂直的入射光,由于被不溶性微粒所阻挡,从而使传感器输出信号变化,这种信号变化与微粒的截面积成正比,光阻法检查注射液中不溶性微粒即依据此原理。 显微图像法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它的基本工作原理是将显微镜放大后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒的投影面积,根据等效投影面积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。
由于这种方法单次所测到的颗粒个数较少,对同一个样品可以通过更换视场的方法进行多次测量来提高测试结果的真实性。除了进行粒度测试之外,显微图像法还常用来观察和测试颗粒的形貌。 除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。
(1) 刮板法:把样品刮到一个平板的表面上,观察粗糙度,以此来评价样品的粒度是否合格。此法是涂料行业采用的一种方法。是一个定性的粒度测试方法。
(2) 沉降瓶法:它的原理与前后讲的沉降法原理大致相同。测试过程是首先将一定量的样品与液体在500ml或1000l的量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品的总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定的时刻分别放出相同量的悬浮液,来代表该时刻对应的粒径。将每个时刻得到的悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。
(3) 透气法:透气法也叫弗氏法。先将样品装到一个金属管里并压实,将这个金属管安装到一个气路里形成一个闭环气路。当气路中的气体流动时,气体将从颗粒的缝隙中穿过。如果样品较粗,颗粒之间的缝隙就大,气体流边所受的阻碍就小;样品较细,颗粒之间的缝隙就小,气体流动所受的阻碍就大。透气法就是根据这样一个原理来测试粒度的。这种方法只能得到一个平均粒度值,不能测量粒度分布。这种方法主要用在磁性材料行业。
(4) 超声波法:通过不同粒径颗粒对超声波产生不同的影响的原理来测量粒度分布的一种方法。它可以直接测试固液比达到70%的高浓度浆料。这种方法是一种新的技术,目前国内外都有人进行研究,据说国外已经有了仪器,国内目前还没有。
(5) 动态光散射法:前面所讲的激光散射法可以理解为静态光散射法。当颗粒小到一定的程度时,颗粒在液体中受布朗运动的影响,呈一种随机的运动状态,其运动距离与运动速度与颗粒的大小有关。通过相关技术来识别这些颗粒的运动状态,就可以得到粒度分布了。动态光散射法,主要用来测量纳米材料的粒度分布。国外已有现成的仪器,国内目前还没有。
Ⅶ 粒度测试的基本知识
① 表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。
② 图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。
③ 函数法:用数学函数表示粒度分布的方法。这种方法一般在理论研究时用。如着名的Rosin-Rammler分布就是函数分布。 粒径就是颗粒直径。这概念是很简单明确的,那么什么是等效粒径呢,粒径和等效粒径有什么关系呢?我们知道,只有圆球体才有直径,其它形状的几何体是没有直径的,而组成粉体的颗粒又绝大多数不是圆球形的,而是各种各样不规则形状的,有片状的、针状的、多棱状的等等。这些复杂形状的颗粒从理论上讲是不能直接用直径这个概念来表示它的大小的。而在实际工作中直径是描述一个颗粒大小的最直观、最简单的一个量,我们又希望能用这样的一个量来描述颗粒大小,所以在粒度测试的实践中的我们引入了等效粒径这个概念。
等效粒径是指当一个颗粒的某一物理特性与同质的球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。那么这个球形颗粒的粒径就是该实际颗粒的等效粒径。等效粒径具体有如下几种:
① 等效体积径:与实际颗粒体积相同的球的直径。一般认为激光法所测的直径为等效体积径。
② 等效沉速径:在相同条件下与实际颗粒沉降速度相同的球的直径。沉降法所测的粒径为等效沉速径,又叫Stokes径。
③ 等效电阻径:在相同条件下与实际颗粒产生相同电阻效果的球形颗粒的直径。库尔特法所测的粒径为等效电阻径。
④ 等效投进面积径:与实际颗粒投进面积相同的球形颗粒的直径。显向镜法和图像法所测的粒径大多是等效投影面积直径。 ① D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。
② D97:一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。D97常用来表示粉体粗端的粒度指标。
其它如D16、D90等参数的定义与物理意义与D97相似。
③ 比表面积:单位重量的颗粒的表面积之和。比表面积的单位为m2/kg或cm2/g。比表面积与粒度有一定的关系,粒度越细,比表面积越大,但这种关系并不一定是正比关系。 同一个样品多次测量结果之间的偏差。重复性指标是衡量一个粒度测试仪器和方法好坏的最重要的指标。它的计算方法是:
其中,n为测量次数(一般n>=10);
x i为每次测试结果的典型值(一般为D50值);
x为多次测试结果典型值的平均值;
σ为标准差;
δ为重复性相对误差。
影响粒度测试重复性有仪器和方法本身的因素;样品制备方面的因素;环境与操作
方面的因素等。粒度测试应具有良好的重复性是对仪器和操作人员的基本要求。 通常的测量仪器都有准确性方面的指标。由于粒度测试的特殊性,通常用真实性来表示准确性方面的含义。由于粒度测试所测得的粒径为等效粒径,对同一个颗粒,不同的等效方法可能会得到不同的等效粒径。
可见,由于测量方法不同,同一个颗粒得到了两个不同的结果。也就是说,一个不规则形状的颗粒,如果用一个数值来表示它的大小时,这个数值不是唯一的,而是有一系列的数值。而每一种测试方法的都是针对颗粒的某一个特定方面进行的,所得到的数值是所有能表示颗粒大小的一系列数值中的一个,所以相同样品用不同的粒度测试方法得到的结果有所不同的是客观原因造成的。颗粒的形状越复杂,不同测试方法的结果相差越大。但这并不意味着粒度测试结果可以漫无边际,而恰恰应具有一定的真实性,就是应比较真实地反映样品的实际粒度分布。真实性目前还没有严格的标准,是一个定性的概念。但有些现象可以做为测试结果真实性好坏的依据。比如仪器对标准样的测量结果应在标称值允许的误差范围内;经粉碎后的样品应比粉粉碎前更细;经分级后的样品的大颗粒含量应减少;结果与行业标准或公认的方法一致等。