Ⅰ 苯并(a)芘的高效液相色谱法测定
方法提要
利用正己烷-液-液萃取、固相萃取C18柱-二氯甲烷淋洗等提取水样中苯并[a]芘,提取液经硅胶柱净化、浓缩、定容后,高效液相色谱-紫外-荧光检测器串联分离检测,外标法定量。
方法适用于地下水、地表水、饮用水及污水等水样中苯并[a]芘的分析,其中固相萃取适用于洁净水分析。方法检出限随仪器灵敏度和样品基质而定。当取样量为1.0L洁净水时,本方法检出限为0.50ng/L。
仪器与装置
高效液相色谱仪带紫外检测器和荧光检测器。
固相萃取装置。
旋转蒸发仪。
恒温水浴氮吹仪。
振荡器。
带聚四氟乙烯活塞的1L分液漏斗。
固相萃取C18柱1000mg,6mL。
硅胶净化柱1000mg,6mL。
分析柱WastersPAHsC18液相色谱专用柱,250mm×4.6mm,粒径5μm;或性质相似的液相色谱柱,250mm×4.6mm,粒径5μm。
离心机。
试剂与材料
无水硫酸钠、氯化钠优级纯,在600℃高温炉中灼烧4h放置在干燥器中备用。
正己烷、二氯甲烷、丙酮等均为农残级。
甲醇HPLC级。
替代物标准p-三联苯称取固体三联苯替代物标准,以甲醇溶液溶解、定容,并用甲醇逐级稀释为10.0μg/mL储备液。替代物标准1-氟萘100.0μg/mL,有证标准物质。替代物标准均在-18℃下保存备用。
标准储备溶液苯并[a]芘,-18℃下避光保存,购自国家标准物质中心。
1L棕色样品瓶。
针头过滤器及注射器针头过滤器型号孔径0.45μm,直径4mm,聚四氟乙烯滤膜。
样品采集与保存
采样前不能用水样预洗采样瓶,采集时样品要充满整个样品瓶,不留气泡。样品采满后迅速放置在低温冷藏箱中并尽快送实验室检测,到达实验室后样品应尽快转移至4℃冷藏设备中保存。7d天内完成样品提取、40d内完成检测。苯并(a)芘对光敏感。在样品采集、运输、储存以及分析全过程应尽可能避光操作,防止光解。
分析步骤
1)试样提取。
a.液-液萃取。将1.0L水样倒入预先加有30gNaCl的1L分液漏斗中,待NaCl溶解后加入50mL正己烷、5μL10.0μg/mL的p-三联苯替代物标准溶液;并用20mL丙酮淋洗样品瓶,淋洗液转入分液漏斗,振荡5min。静置10~20min,将水相转移至原样品瓶,正己烷相转入150mL平底烧瓶中。原样品再进行第二次萃取,萃取方法同第一次,正己烷量减少为30mL。合并正己烷相,并加入3g无水硫酸钠,稍稍摇动,观察有无结块现象,如有结块,需补加无水硫酸钠至沙状,继续放置20min,之后过滤至另一150mL平底烧瓶中,滤液旋转蒸发浓缩至约3mL。如果是洁净地下水,样品可以不净化,直接转移至KD浓缩瓶中,氮气吹扫至0.3mL,加入甲醇0.5mL,氮气吹扫至0.3mL,再加甲醇0.50mL,氮气吹扫至0.3mL,最后甲醇定容1.0mL,0.45μm滤膜过滤,HPLC测定。如污染较重,则需净化。净化方法见2)样品净化。
b.固相萃取(适用于洁净水样)。将固相萃取C18柱(1000mg,6mL),安放在固相萃取装置上,用10mL二氯甲烷淋洗C18柱,再用10mL甲醇分两次淋洗C18柱(第二次甲醇浸泡5min),最后用10mL空白水分两次淋洗,等待上样。在活化过程中不要让柱子流干。在要富集的1.0L水样中加入5g氯化钠、40ng替代物标准p-三联苯、30mL甲醇等混匀后样品以5mL/min的流速流过已活化的C18柱。样品流完后真空干燥3min后取下C18柱,以3000r/min离心10min除水。除水后的C18柱安装回固相萃取装置,用5mL二氯甲烷浸泡C18柱5min后自然流下,收集洗脱液。用4mL二氯甲烷洗涤样品瓶并与样品洗脱液合并。洗脱液中加入1g无水Na2SO4,振摇后放置15min,用滴管将洗脱液转移至25mLKD浓缩瓶中,用2mL二氯甲烷洗涤Na2SO4相后并入KD浓缩瓶,加入0.5mL甲醇,氮气吹扫至0.5mL,再入甲醇1.0mL,氮气吹扫到0.5mL,最后甲醇定容至1.0mL,过滤HPLC测定。
2)试样净化。净化硅胶柱预先用10mL10%丙酮-正己烷溶液、10mL正己烷活化后,待正己烷接近硅胶顶层时迅速将待净化样品提取液转入柱中,先用5mL正己烷淋洗,弃之,再用25mL正己烷-二氯甲烷(1+1)混合溶液淋洗,淋洗液用KD浓缩瓶承接,氮气浓缩,甲醇换相、最后定容至1.0mL,过滤HPLC测定。
3)校准曲线。用甲醇分别稀释1.93μg/mL苯并[a]芘二级标准溶液,配制成0ng/mL、1.93ng/mL、9.65ng/mL、19.3ng/mL、28.9ng/mL、38.6ng/mL标准系列,每个标准系列点加入4μL的10.0μg/mL三联苯替代物标准溶液。通过浓度与对应峰面积建立标准曲线。
4)高效液相色谱分析条件。流动相为甲醇溶液,流速1.2mL/min(恒流方式),柱温40℃。紫外检测器(UV):波长254nm。荧光检测器(FLD):0~6min,激发波长(Ex)250nm,发射波长(Em)370nm;6~15min,激发波长294nm,发射波长430nm.。
5)定性及定量分析。
a.定性分析。采用试样中待测目标物保留时间与标准目标物保留时间相比较的方式进行定性分析。检测方法采用荧光和紫外串联检测的方式。特别当有干扰存在时,应仔细分析荧光和紫外色谱图排除干扰。如果试样中待测目标物含量达到方法检出限5倍以上,需GC-MS确证。
b.定量分析。采用荧光和紫外串联检测的方式进行定量分析。以荧光检测定量为主,对有干扰存在应结合紫外检测情况综合确定。外标法定量。再根据试样测定浓度、称样量计算出试样中浓度。目标化合物峰面积和定量校准曲线可以由高效液相色谱仪工作站自动完成,定量校准曲线也可由EXCEL工作软件完成。对自动积分的峰面积应逐一检查各峰基线,对不合理基线进行必要修正。
对含量接近检出限水平的试样,可以采用与其浓度相近的标准单点校正。对于含量超过校准曲线上限的试样应稀释或减小取样量,使其峰面积保持在校准曲线的线性范围内,重新测定。
6)方法性能指标。分别配制质量浓度为19.3ng/L的苯并[a]芘、40ng/L三联苯的空白加标试液1L,按试样分析步骤进行分析,获得方法精密度和加标回收率分别为2.07%和81.1%~93.0%(n=6)。
上述苯并[a]芘校准曲线的线性方程是y=55947x-5570.5,相关系数R2=0.9999。
将质量为3.86ng的苯并[a]芘标准分别加入到1.0L空白水样中,余下同试样分析,以3倍信噪比对应浓度作为方法检出限,其方法检出限为1.00ng/L。
色谱图的考察(图82.9):
图82.9苯并[a]芘标准高效液相色谱图(荧光检测)
质量控制
每批试样或至多20个试样必须至少进行一个全流程试剂空白、一个平行双样和基体加标分析,以监测分析流程中玻璃器皿、试剂、溶剂和其他硬件带来的干扰和与之相关的试样分析精度,加标浓度不得低于原始试样的背景浓度。
当分析超过 8h 或每分析 10 个试样后,应用标准曲线中等浓度的确证标准检查仪器的工作状态,确证标准与最初标准相比偏离大于 20%,需重新测定标准系列; 若偏离仍大于 20%,需重新配制标准曲线和分析试样。
替代物标准三联苯 (或 1-氟萘) 回收率: 应为 65%~130%; 若不在限值之内,需要重新检查并确认计算、替代标物准、仪器是否问题。
注意事项
苯并 (a) 芘是强致癌物,提取液浓缩及净化过程应在通风柜中进行,必要时戴防毒面具、手套以减少对人体的危害。
Ⅱ 高效液相色谱仪可以测定重金属含量吗 怎么测
一般情况下高效液相色谱主要测定有机物和一些无机离子,测定重金属一般可测定有机金属,比如甲基汞,但方法都是些文献方法,没有广泛使用。
多数情况下,测定重金属含量都不用液相色谱检测,而用原子荧光法(AFS)、电感耦合等离子体质谱法(ICP-MS),原子吸收光谱法(AAS),分光光度法(UV),电化学法(阳极溶出伏安法),X射线荧光光谱法(XRF)等 。下面是成本最低的目视比色法:
1 原理:重金属离子与负二价硫离子在乙酸介质中生成有色硫化物沉淀。重金属含量较低时,形成稳定的暗色悬浮液,可用于重金属的目视比色法测定。
2 适用范围:本方法适用于所有无机物中重金属的测定。检测范围为1~20ppm。
3 试剂与溶液:
3.1 铅标准贮备液的配制:称取硝酸铅159.8mg于100ml水中,加1ml浓硝酸溶解,稀释至1000ml。此溶液应贮存在无铅玻璃容器中。
3.2 铅标准液的配制:使用当天现配制,取10ml铅标准贮备液,稀释至100ml。该溶液中每毫升中含10µg铅。
3.3 PH=3.5醋酸盐缓冲溶液:溶解25.0g NH4AC于25ml水中,加38.0ml(6N)HCl,用6N NH4OH或6N HCl调至PH=3.5,以PH计为指示。然后将溶液稀释至100ml。
3.4 硫代乙酰胺溶液的配制:称取4g硫代乙酰胺,溶解于100ml水中。
3.5 甘油-碱溶液:将200g甘油与135g水混合,加142.5ml 1N NaOH及47.5ml水。
3.6 硫代乙酰胺-甘油溶液:取0.2ml硫代乙酰胺溶液和1ml甘油-碱溶液,于沸水浴上加热20秒,配好后立即使用。
3.7 对照品制备:取2ml铅标准溶液于50ml比色管中,用水稀释至25ml,用1N醋酸或6N NH3H2O调至PH=3.0~4.0(用精密试纸测验),稀释至40ml。
4 操作步骤
按产品标准的规定取样,并加适量水制备试液,加入适量盐酸,煮沸,冷却。滴加1:1氨水呈碱性,用水稀释至25ml,以精密试纸作指示,用1mol/L醋酸调PH=3.0~4.0,如需过滤,用10ml水冲冼坩埚和滤纸,将试液和冲洗水收集于50ml比色管中,稀释至40ml,混匀。
分别向样品、对照品试管中加入2ml PH=3.5缓冲液及1.2ml硫代乙酰胺甘油碱溶液,用水稀至50ml,混匀,2分钟后在白色表面上自上而下观测,对照品相对于样品为20PPm。
Ⅲ 如何建立高效液相色谱法测定有关物质的方法
摘要 本文就如何建立TLC法测定有关物质的方法进行论述,系统地阐述了薄层色谱法各条件确定的原理,并列举了质量标准制订中存在的某些问题。
关键词 薄层色谱法(TLC法) 有关物质 方法建立
有关物质是研究药品中除主成分以外的杂质,它可能是原料药合成过程中带入的原料、中间体、试剂、降解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程中产生的降解物,或是在贮藏、运输、使用过程中产生的降解物等[1]。这些杂质的存在直接反映药品的有效性和安全性,故要对其进行研究,特别是在药品申报的质量研究资料中需建立其检测方法,并根据生产、稳定性考核等实际情况考虑是否在质量标准中制订该检查项,规定其限度。目前,有关物质的常用测定方法有高效液相色谱法(HPLC法)和薄层色谱法(TLC法)。
TLC的特点是快速、简便,尤其是对无紫外吸收的杂质测定,更具有其应用价值。如能将TLC法与HPLC法有机地结合、或彼此间进行比对研究,便可得到更多、更为准确的有关杂质信息,做到两方法间的相辅相成,相益得彰!本文将着重讨论如何建立薄层色谱法测定有关物质的方法。
1.测定方法类型
常用的方法有杂质对照品法(适用于已知杂质)和自身(稀释)对照法(适用于一般杂质检查,杂质成分少且尚不能取得杂质对照品)。目前国内由于难以获得杂质对照品、故一般均采用自身对照法。
2.展开剂的确定(即专属性试验)
专属性的研究是提供被分析物在杂质和辅料存在时能被区分的证明,该点是色谱条件建立的关键。通常采用在被分析物的对照品或精制品中加入一定量的杂质或辅料,证明色谱条件可将各杂质与被分析物分离[1]。这里的关键是:将多少量的杂质加入到多少量的主成分中。正确的作法是将1%(w/w)浓度量的各杂质加入到100%浓度的主成分中,配制这样的溶液来
验证系统适用性。之所以如此配制,目的是模仿样品中有可能存在的状态,即有少量(1%左右)杂质存在时是否能与主成分达到完全分离,只有这样才能比较客观、科学地反映样品中实际存在情况的(见图1);而不应把该溶液配制成:主成分与中间体相同浓度的。因为一者实际检测时样品中不可能存在此种情况;二者该浓度不易确定,目前国内申报资料中一般的作法均是配制成较低的一致浓度,这样各斑点当然易于完全分离了(见图2),但在实际测定时,由于主斑点急剧增大,很易将相邻杂质包含于主成分斑点中。同样,质量标准中的系统适用性试验用溶液的配制方法亦如此。
(1,3,4为杂质,2为主成分)
图1 图2 (杂质浓度均为供试品溶液浓度的1%)
3.检出条件的确定
其基本出发点是:主成分与相关杂质均应在该条件下显色,且在相同浓度下,斑点大小应基本一致。薄层板的类型根据被测物质的性质来选用,测定有紫外吸收的物质通常选用GF254或GF365板;测定无紫外吸收、需喷显色剂的,常选用硅胶G板或H板,选用该类薄层板时,显色方法根据被测物质的结构式选取,但当有多个显色方法时,应分别进行试验,选取灵敏度最高的显色方法。如醋酸氢化可的松有关物质的测定,中国药典2000年版采用碱性四氮唑蓝试液显色,美国药典26版采用硫酸-乙醇(10:90)溶液显色,两者均为激素类药物的显色方法。醋酸氢化可的松属于激素类中的肾上腺皮质激素,四氮唑法是肾上腺皮质激素的重要显色方法;而硫酸-乙醇显色法则主要是针对激素类中的雌激素的显色反应,对于属于肾上腺皮质激素类的醋酸氢化可的松则反应活性不强,结果两法的灵敏度相差10倍以上。因此,检出条件的确定,一定要在查阅文献的基础上,并根据试验结果进行综合考虑。
4.供试品溶液浓度的确定(灵敏度试验——最低检出限的测定)
供试品溶液浓度的设定在有关物质检测中是至关重要的,浓度越高、越能反映样品中杂质存在的情况,但若设定得过高,则会产生主斑点严重拖尾、“断腰”等超载现象的发生,产生错误结论;若设定太低,又将达不到检测杂质的目的,观测不到杂质量的变化。其设定是根据最低点样量和最大点样量来综合考虑的。
最低检出限虽然是个绝对值,但真正的意义却是其相对值,即相对于供试品溶液的浓度多少而言,所以测定结果不仅要罗列出其绝对值又应列出其相对值,这样最低检出限才有意义!最大点样量则是通过不断加大供试品溶液浓度,直至主斑点严重拖尾、“断腰”等情况出现时来得到的。然后根据最低检出限,采用“上推法”来确定:如一般设定杂质斑点小于1.0%对照斑点,对照溶液的浓度至少应为最低检出浓度(即最低检出限)的20~50倍,则供试品溶液浓度是最低检出浓度的2000~5000倍;反过来,最低检出浓度应至少达到供试品溶液浓度的0.02%~0.05%。应注意的是:由于最低检出量和最大点样量因试验环境、薄层板质量以及即时试验时其他各因素的不同而改变(即耐受性因数),故供试品溶液的浓度在保证小于最大进样量的情况下,可在此基础上设定得再高一些,以保证该浓度可适用于各种条件下。举例说明见表1(规定杂质限度为1.0%)。
表1 最低检出量、最大点样量、供试品溶液和对照溶液浓度之间的比例关系
最大点样量
供试品溶液
对照溶液
最低检出量 浓 度 8mg/ml 3mg/ml 30μg/ml 1μg/ml 点样量 10μl 10μl 10μl 10μl 绝对量 30μg 0.3μg 10ng 相对于样品测定浓度的 100% 1.0% 0.02% 倍 数 关 系 5000倍 30倍 “基准点”
供试品溶液浓度也可设定得再高些,但不可超过最大点样量。
5.加样回收试验(即准确性试验)
准确性试验可采用在预经有关物质测定后的样品中,加入已知量杂质的方法来评价。准确称取各杂质,将含有1%(w/w)浓度的各杂质加入到样品溶液中,以验证所采用的薄层测定条件是否可分离检测出相应的各杂质以及样品中已存在的杂质是否累加,斑点是否加深。该原理同前面所述的专属性研究是一致的。
6.强力破坏试验
该项研究是为了揭示原料药内在稳定性的特性,它是开发研究的一部分。这些试验是在比加速试验更剧烈的条件下进行的,其能够包含药品在销售过程中所遇到的剧烈条件。可取一批样品通过强光、高温、高湿、氧化破坏、以及酸碱破坏来证明该展开条件能分离检测出杂质。
7.展开距离
测定时一定要采用25cm、长薄层板,展开距离应尽可能长一些,以使杂质与主成分尽量分离。如用短板,易造成临近主斑点的杂质斑点“躲进”主斑点中。但同时又应注意,距离拉大,斑点分散,会损失最低检出限,降低灵敏度,故应综合考虑。
8.其它的因素
展开温度应尽量控制在20~25℃之间,尤其在冬季,应注意环境的温度,如太低,将严重影响展开效果。另层析缸的盖儿,应涂抹凡士林油,以保证整个试验过程中,层析缸的密封,避免展开剂挥发;并应在展开前,预先倾入展开剂,以使层析缸内的空气饱和,达到最佳的展开效果。薄层板由于有自制、市售,质量不一也应注意。
二.讨论
1. 质量标准中的系统适用性试验,最好能将最难分离的杂质订入系统适用性试验用溶液的配制,将此杂质的浓度配制为主成分浓度的1%,或0.5%,或0.2%(依据杂质限度而定)进行试验,验证分离度后,再进行样品的测定,以确保试验的准确进行。
2. 质量标准中,应配制系列浓度的对照溶液(即梯度对照),以对杂质有“半定量”的概念,这可更好地评价杂质存在的情况;并应规定杂质的个数及最大杂质斑点的限度,使质量标准更完善、科学。经查阅,中国药典薄层色谱法测定有关物质的有70个品种,仅有2个品种采用了梯度对照,绝大部分品种仅是制定了对照溶液,均未规定杂质个数,和最大杂质斑点限度,如有若干个杂质斑点也无法判定;而英国药典和美国药典则几乎每个品种均采用梯度对照,并规定杂质个数和最大杂质斑点限度,这一点值得学习和推广。
3. 错误的一种误区,认为HPLC法完全替代了TLC法,这是不正确的,一定要做到相互补充、相互论证、相互参考才是最客观、最科学的!
本文是在参阅了日本《分析方法验证》一书和大量日本国内新药申报资料中质量研究部
分的内容所写而成。
Ⅳ 如何建立高效液相色谱法测定含量的方法
1 色谱条件的确定
专属性是色谱条件建立的关键通常是采用
在被测物对照品(或供试品)中加入适量的杂质或辅
料以验证所选色谱条件能否将各杂质与被测物
分离检出
[2]
。应按1(w/w)被测物浓度的各杂质量
添加至被测物中模拟被测物中可能存在杂质的
状态即有少量(约1)杂质存在时能否与被测物
达到完全分离(分离度大于1.5)以验证系统适用
性。只有这样才能较为客观、科学地反映被测物的
实际情况。而不应将被测物与各杂质配制成相同浓
度的溶液因为实际检测中不可能存在这种情况
且该浓度也不易确定。在实际检测时由于被测物
浓度较大很易将相邻杂质峰包含其中。另外还需
测定溶剂和辅料(检测制剂时)是否有干扰。目前
美国药典(USP)、英国药典(BP)及许多进口产品的
质量标准中有关物质测定方法学的专属性验证均
采用此法。还须说明的是杂质与杂质峰间的分离
度达1.2即可而被测物与其相邻杂质峰的分离度
必须大于1.5。
2 检测波长的选择
有关物质检测的研究对象是杂质而非被测
物。但测定则是通过各自的峰面积来表达故波长
的选择必须考虑被测物和各杂质在检测波长下的校
正因子(f)是否相同。应分别制备相同浓度的被测
物与各杂质溶液经紫外扫描后以吸光度相近的波
长为检测波长。在该检测波长下分别进样测定
由各峰面积计算校正因子。若f为0.81.2则表明
被测物与各杂质的f相同可消除f的影响。若f≤0.8
或f ≥1.2则应在计算时加入f。目前通常以被测物
的最大吸收波长为检测波长、不加校正因子的计算
方法而未综合考虑各杂质的f。
3 供试品溶液浓度的确定
供试品溶液浓度的确定也非常重要。虽然浓度
越高越能反映被测物中杂质存在的情况但若设定
过高会产生主峰严重拖尾、裂峰、柱超载和检测器超载等情况若设定过低则灵敏度不够无法
检测杂质及其含量变化。
最低检出浓度的测定可分为信噪比法和直接评
价法两种
[3]
。后法是目前较为科学的做法即将仪
器的灵敏度调至较适宜的值(仅对灵敏度可调节的
仪器而言目前市场上主流品牌的液相色谱仪均已
设定了一个恒定、较为灵敏的值)然后将被测物
溶液不断稀释后进样测定直至被测物峰面积无法
检出为止此时的浓度即为最低检出浓度。
最大进样量则是采用不断增加被测物溶液浓
度直至峰严重拖尾、裂峰、柱超载和检测器超载
等情况出现。
根据最低检出浓度采用“上推法”来确定
供试品溶液浓度如一般设定杂质总量小于1.0
对照液对照溶液的浓度至少应为最低检出浓度的
2050倍供试品溶液浓度则应是最低检出浓度的
20005000倍。同时还应考虑仪器、色谱柱等因
素对最低检出浓度和最大进样浓度的影响(即耐用
性因素)所以供试品溶液的浓度应在保证小于最
大进样量的情况下适当设定得高些以保证该浓
度在任何试验条件下均有足够的检测灵敏度。表
1为最低检出浓度、最大进样量、供试品溶液和对
照溶液间的比例关系(进样量10µl规定杂质限度
1.0)。
4 线性试验
在稳定性考察中如某杂质含量不断增加
则说明被测物降解的途径稳定、可循则有必要对
该杂质进行针对性地监控即采用该杂质对照品
(经确证结构后由人工合成获得)以外标法准确测
定。此时与含量测定相似应进行线性试验。
通常将杂质限度设定为该杂质的100浓度线性
验证范围10150(即相当于被测物测定浓度
表1 最低检出量、最大进样量、供试品溶液和对照
溶液间的比例关系
参数浓度/µg·ml
–
1
绝对量/ng相当于供试品
溶液浓度/与最低检出
浓度的倍数
最大进样量3000
最低检出浓度0.110.02
供
Ⅳ 高效液相色谱法测定中药含量采用的方法有哪些
遵照下面的要求选择合适的方法,HPLC法外标、内标两种,检测器一般UV即可.
含量测定分析方法验证的可接受标准简介
摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性.
关键词:含量测定 分析方法验证 可接收标准
在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制.为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则.该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述.但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求.另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求.本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考.
1.准确度
该指标主要是通过回收率来反映.验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率.
可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%.
2.线性
线性一般通过线性回归方程的形式来表示.具体的验证方法为:
在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量.以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析.
可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%.
3.精密度
1)重复性
配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%.
2)中间精密度
配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%.
4.专属性
可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0.以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980.
5.检测限
主峰与噪音峰信号的强度比应不得小于3.
6.定量限
主峰与噪音峰信号的强度比应不得小于10.另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%.
7.耐用性
分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,每个条件下各测试两次.可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%.
8、系统适应性
配制6份相同浓度的供试品溶液进行分析,主峰峰面积的相对标准差应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%.另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定.
望采纳,谢谢
Ⅵ 第二十章:高效液相色谱法
与经典色谱比较优点:
与气相色谱比较:
按固定相聚集状态:液液色谱法、液固色谱法
按分离机制:分配、吸附、离子交换、分子排阻四类基本机制
其他分离机制:亲和色谱法、手性色谱法、胶束色谱法、电色谱法、生物色谱法
目前最常用固定相是化学键和相,称为化学键和色谱法
键合相:通过化学反应将有机基团键合在载体表面构成的固定相
正相NP、反相RP
采用氰基、氨基等作为固定相,非极性或弱极性溶剂为流动相。
分离极性至中等极性分子行化合物
分离机制一般认为是分配,也有认为是吸附如形成氢键的
一般规律:剂型强的组分容量因子k大,后出。流动相极性增强洗脱能力增强
十八烷基硅烷、辛烷基硅烷等,有时也用弱极性或中等极性
流动相以水作为基础溶剂再加一定量极性调整剂
分离机制有争论,多种理论模型
影响组分保留行为的主要因素:
分离非极性至中等极性组分
离子对色谱法(IPC)分正相和反相,正相已经少用。
反相离子对色谱法(RP-IPC)是把离子对试剂加入到含水流动相中,使被分析组分离子在流动相中与离子对试剂的反离子生成不带电荷的中性离子,使组分k增加,用于分离可离子化或离子型化合物
用于生物碱类、儿茶酚胺类、有机酸类、维生素类、抗生素类药物分析
离子色谱法:将离子交换色谱与电导检测器相结合分析各种离子的方法
可以分析无机和有机阴阳离子,氨基酸、糖类、DNA和RNA的降解产物
分为抑制型(双柱型)、非抑制型(单柱型)
对于X - 离子:
双柱型使用两根离子交换柱,一根为分离柱,填有低交换容量的阴离子交换剂,另一根为抑制住,填有高交换容量的阳离子交换剂,两者串联。进入分离柱的组分X - 按正常离子交换色谱分离,在进入抑制柱,除去组分中的OH - 从而使本底电导率降低,利于较大电导率HX的检测。
非抑制型可使用更低交换容量的固定相,浓度很低、电导率很低的流动相,这样本底电导率低,试样离子被洗脱后可直接被电导检测器检测
利用手性固定相(CSP)、手性流动相添加剂(CMPA)分离分析手性化合物的对映异构体的色谱方法。还有间接法(加入手性试剂使一对对映体转变为非对映体用常规方法分离)。
环糊精(CD)也是一种手性选择剂,分离机制主要是由于分子内熟睡空腔的动销和多手性中心的作用,如果对映体能被空腔紧密包络,而且与CD分子外沿的仲醇基作用,则被固定相保留,两对映体与CD作用程度不同从而分离。
亲和色谱法(AC)利用或模拟生物分子之间的专一性作用,从复杂试样中分离和分析能产生转移性亲和作用的物质的一种色谱方法。选择性最高。
要求:颗粒细且均匀、传质快、机械强度高、耐高压,化学稳定性好
液固:全多空硅胶、高庚子多空微球
应用最多的是化学键和相
要求:化学稳定性好;适宜溶解度;与检测器相适应;纯度高;粘度低
使用前经微孔滤膜过滤,除去固体颗粒,还要脱气处理
分离方程式:
选择合适的溶剂强度使组分k在最佳范围内,选择合适种类的溶剂改善选择性使α增大获得良好分离度R>1.5
在化学键和色谱中溶剂洗脱能力即溶剂强度直接与它的极性相关。
溶剂极性用溶剂极性参数表示 ,用以表示正相色谱中洗脱能力
反相键合相色谱溶剂强度用另一强度因子S表示
混合溶剂可以用P或S的加权平均表示
HPLC速率理论方程:
尽可能减小柱外死体积
(349页图)
高效液相色谱仪一般由高压输液系统、进样系统、色谱柱分离系统、检测系统和数据处理系统组成
分类:
要求:灵敏度高、噪声低、线性范围宽、重复性好、适用范围广
紫外检测器UVD:不破坏样品,只能检测有紫外吸收物质、对流动相有限制
荧光检测器FD:灵敏度更高,只适用于产生荧光物质,体内药物分析常用
电化学检测器ECD:极谱、库仑、安培、电导。电导用于离子检测,安培应用广泛,灵敏度高适用于痕量组分分析,凡是具有氧化还原活性的都能进行检测
蒸发光散射检测器ELSD:适用于挥发性低于流动相的组分,用于糖类、高级脂肪酸、磷脂、维生素、氨基酸、三酰甘油及甾体;对各种物质几乎有相同响应;但是灵敏度低,流动相必须是挥发性不能含有缓冲盐。
仪器自动化:
采集和分析色谱数据:
中心计算机控制系统:
超高效液相色谱法UPLC:借助于HPLC理论及原理,利用小颗粒固定相,非常低的系统体积及快速检测手段等技术,使分离度、分析速度、检测灵敏度及色谱峰容量大大提高,从而全面提升了液相色谱的分离分析效能。
操作条件比较(355表)
优点:分析速度快;分离效能高;灵敏度高——小颗粒技术和整体化仪器设计
van Deemter方程,可以发现固定相粒度越小,分离度越大。同时粒度越小,最佳流动相线速度越大,并有更宽优化范围,因此降低粒度可以提高分析速度。但是会增加系统柱压差,受到固定相机械强度和色谱仪系统耐压性限制
常用外标和内标,少用归一化。对药品中杂质含量测定常用主成分自身对照法
主成分对照法分为不加校正因子和加校正因子两种:
注意进行色谱系统适用性试验:理论塔板数、分离度、拖尾因子和重复性
Ⅶ 高效液相色谱有几种定量方法其中那种是比较精确的定量方法并简述
峰面积法、峰高法、归一法、外标法。峰面积法是比较精确的定量方法
Ⅷ 高效液相色谱的原理及分析方法
原理主要有这几种:
液—液分配色谱法
(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式: 高效液相色谱计算公式
式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。
液—固色谱法
流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:Xm nSa ====== Xa nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。]
离子交换色谱法
(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流 离子交换色谱柱
动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) (树脂-R4N Cl-)=== (树脂-R4N X-) Cl- (溶剂中) 当交换达平衡时: KX=[-R4N X-][ Cl-]/[-R4N Cl-][ X-] 分配系数为: DX=[-R4N X-]/[X-]= KX [-R4N Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。
离子对色谱法
(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原 离子色谱仪流程示意
理可用下式表示:X 水相 Y-水相 === X Y-有机相 式中:X 水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化十六烷基三甲铵等);X Y---形成的离子对化合物。 当达平衡时: KXY = [X Y-]有机相/[ X ]水相[Y-]水相 根据定义,分配系数为: DX= [X Y-]有机相/[ X ]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的混合物的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如核酸、核苷、生物碱以及药物等分离。
离子色谱法
(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 担体图示
抑制柱上发生的反应: R-H Na OH- === R-Na H2O R-H Na Br- === R-Na H Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的最佳方法。也可用于阳离子分析。
空间排阻色谱法
(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。
分析方法:
综述
色谱柱的填料和流动相的组分应按各品种项下的规定.常用的色谱柱填料有硅胶和化学键合硅胶。后者以十八烷基硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进化学键合固定相反应
样量、检测器的灵敏度等,均可适当改变, 以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2.系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子.
色谱柱的理论板数
在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图化学键合固定相应用
,量出供试品主成分或内标物质峰的保留时间t(R)和半高峰宽W(h/2),按n=5.54[t(R)╱W(h/2)]^2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。
分离度
定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: 2[t(R2)-t(R1)] ,R= -W1+W2 式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的峰宽。 除另外有规定外,分离度应大于1.5。
拖尾因子
为保证测量精度,特别当采用峰高法测量时,应检查待测峰的拖尾因子(T)是否符合各品种项下的规定,或不同浓度进样的校正因子误差是否符合要求。拖尾因子计算公式为: W(0.05h) T=-2d1 式中 W(0.05h)为0.05峰高处的峰宽; d1为峰极大至峰前沿之间的距离。 除另有规定外,T应在0.95~1.05间。 也可按各品种校正因子测定项下,配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成三种不同浓度的溶液,分别注样3次,计算平均校正因子,其相对标准偏差应不大于2.0%。