1. 测厚仪都有什么种类
涂镀层测厚仪根据测量原理一般有以下五种类型:
1.磁性测厚法:适用导磁材料上的非导磁层厚度测量。导磁材料一般为:钢,铁,银,镍。此种方法测量精度高。
2.涡流测厚法:适用导电金属上的非导电层厚度测量。此种较磁性测厚法精度低。
3.超声波测厚法:适用多层涂镀层厚度的测量或者是以上两种方法都无法测量的场合。但一般价格昂贵,测量精度也不高。
4.电解测厚法:此方法有别于以上三种,不属于无损检测,需要破坏涂镀层,一般精度也不高。测量起来比较其他几种麻烦。
5.放射测厚法:此处仪器价格非常昂贵(一般在10万RMB以上),适用于一些特殊场合。
国内目前使用最为普遍的是第1/2两种方法。
GT-100高精度涂层测厚仪可无损地直接测量磁性材料(如钢、铁、合金和硬磁性钢)等物体表面上的非磁性覆盖层厚度(如:油漆、塑料,陶瓷,橡胶,铜,锌、铝、铬、铜等)。非磁性金属基体上非导电覆盖层的厚度(如铜、铝、锌、锡等基底上的珐琅、橡胶、油漆镀层)。参考资料:涂层测厚仪
2. 管壁测厚仪日常测量方法有那几种呢
要是想理解管壁测厚仪的测量办法,首先要理解它的定仪由于只要齐全理解之后才深入理解它的测量办法就容易多了。管壁测厚仪也叫超声波测厚仪、超声测厚仪、超声波声速仪、钢板测厚仪等等。利用于消费设施中各种管道和压力容器停止厚度测量,也可以对各种板材和各种加工整机作准确测量。能测试任何硬资料、铝、紫铜、黄铜、锌、聚乙烯、聚氯乙烯、灰铸铁、及其它任何超声波的良导体厚度。如刚、铸钢、玻璃、陶瓷、塑料。上面兰泰仪器就教大家罕见的管壁测厚仪的测量办法有那些。
1.磁性测厚法:实用导磁资料上的非导磁层厚度测量。导磁资料个别为:钢\铁\银\镍。此种办法测量精度高。
2.涡流测厚法:实用导电金属上的非导电层厚度测量,此种办法较磁性测厚法精度低。
3.超声波测厚法:目前国际还没有用此种办法测量涂镀层厚度的,国外一般厂家有这样的仪器,实用多层涂镀层厚度的测量或则是以上两种办法都无奈测量的场所.但个别价钱低廉、测量精度也不高。
4.电解测厚法:此办法有别于以上三种测量办法,不属于无损检测,须要毁坏涂镀层,个别精度也不高,测量起来较其余几种费事。
5.喷射测厚法:此种仪器价钱十分低廉(个别在10万RMB以上),实用于一些特殊场所。
3. 目前国际上比较认可的重金属的测量方法有哪啊
看到论坛上很多人询问关于如何检测镀层中的重金属元素的方法,感觉大家都没什么方向,为了国内RoHS测试技术的发展,就把自己的一些经验和同好们一起分享。
首先这些方法都不是标准方法,具我所知国际上还没有任何一部相关的测试标准出台。ISO3613是专门针对钢铁基材上的锌镀层中的六价铬离子进行测试,它本身就不是做的金属元素,而且对基材和镀层都有特别的限制,所以不予讨论。由此可见国际上对镀层中重金属元素的测量还没有好的解决办法,再次证明了RoHS指令的不科学性,我们再不能随其起舞,盲目跟从了。
我提供的这些方法,其多多少少都还有些自身不完善和不合理处,但是至少是个方向吧。希望大家能够共同讨论,一起予以改善,不要只是照抄国外的那些垃圾方法。说句老实话在工业测试方面我国的能力绝不比西方国家差,至少咱们建国后老毛搞的三十年工业化不是白搞的,要不原子弹炸不了,卫星也上不了天。
闲话少说下面开始正题
镀层测试问题很复杂,首先你要清楚的了解RoHS和IEC相关指令的要求和客户产品的用途及其镀层在产品用途中的必要性。具我所知RoHS是规定要基材和镀层都主要以金属元素组成,如氧化膜、磷化层、钝化层和其他有机物膜都不算是镀层测试。当然镀层材料可以是各种混合镀液,并不一定是单一的金属元素,但必须主要是金属元素。另外达到一定的厚度才算是镀层,我和同事私下议论的结果为,如果某产品基材是含铅很高不符合RoHS标准,但其为了逃避RoHS在表面做些镀层处理的话就是合格了。这其实在RoHS要求中也是合法、合理的,因为RoHS本来就是为了保护环境,要求生产商对产品做些环保处理。你可以选择不使用含Pb材料,也可以选择特殊处理使产品中的重金属不污染环境就可以了,特别是某些产品用途需要用到Pb等的情况。如铅黄铜等,在欧盟还未将其豁免时,我们就曾经建议客户使用这样的方法。
说到镀层测试的话,我曾经有过专门的研究,测试中遇到的情况更是非常复杂,我就随便说说看。
首先要清楚RoHS对样品取样的要求,既镀层必须是可从基材剥离的,而且是要用物理手段予以剥离。大家可能会有疑问,不清楚的可以去看下RoHS取样要求,这里我不多做解释了。
这样一来用化学法溶解镀层进行测试看起来是不合乎RoSH规定了,但其实不然。因为用酸溶解镀层其实已经是样品前处理既溶样的过程了,而且RoHS中并没有规定样品前处理即溶样的程度(如全消解或何为全消解),也没有清晰规定制样和前处理的界限。所以说做RoHS除了要对标准指令有了解外,还要有很好解读它的能力,至少要给客户一个合理的解释。
继续说。
要测试的话,客户必须提供的信息有镀层厚度、镀层的主要成分比例、镀层材料的密度、基材的主要成分比例、基材的密度。请注意镀层和基材都可能是多元素多成分组成,知道其主要成分对所用酸的选择很有意义。而镀层也是一样,各种不同成分的镀层其密度都不同,对最后的计算结果影响很大。单一的镀层元素其密度可以查得到,但事实上各家公司所用的镀层都是多元素的不同配比,所以为保险起见应由客户提供,而不应该自以为是的用单一元素密度计算。一句话要测试镀层首先得先对当今镀层技术有所了解,否则盲人摸象,根本就是瞎搞。
测试方法主要有多种:
第一种用合适的稀酸溶解镀层,此方法比较像很多微电子和金属行业用的酸洗法。样品要先用水或者酒精洗净,放入烘箱中烘干,然后再放入干燥器中冷却至室温,然后称重记录。首先选择合适的酸很重要,如果基材主要成分是铜,镀层主要成分是锡,那就要选择稀盐酸较好。但前面说了镀层和基材都可能是合金的多元素,所以测试之前还应该先多做试验,来确定合适的酸(可用混酸),合适的浓度,酸洗的时间等。原则上反映速度越慢越好,溶解的厚度则要适中,太多了容易溶解到基材,太少了缺少代表性。样品要同时、同条件下做三样以上,注意尽量保持同步。溶解样品到一定时间后,用特殊材料的夹具取出,然后用比原来更稀的酸清洗样品表面,最后再用纯水清洗多次保证无残留。样品放入烘箱中烘干,然后再放入干燥器中冷却至室温称重,要和原来使用同样一台天平。溶液蒸到一定的体积,建议20ml左右,然后洗入50ml容量瓶待测。因为溶解下的镀层较少,所以其中含量肯定也较低,所以建议用ICP-MS来测量,可得到较好的精度。注意如把溶液体积控制的少些,那ICP和AAS也可以测试,但溶液少,第一洗净定容困难,很容易造成人为的损失。第二过少的体积,过大的酸度容易造成某些镀层主元素如锡在某些酸酸度高的情况下产生沉淀。最后溶解样品前重量—溶解后重量=溶解的镀层重量。再结合镀层密度和仪器读数就可以计算出各元素在镀层中的含量。
此方法操作难度较大,流程很长,而且受样品形状的影响很大(曾经做过电子元气件的针脚等,很细小的部件)。最主要是原理上不够科学,因为你无法确定有没有溶到基材。不能科学的判断是其致命伤,本来考虑在溶解液中加入可确认是否溶到基材的指示剂(滴定和某些分析中采用的指示剂,用变色来显示某些物质的出现),但因为有更适合的方法,所以此方法已经放弃,不再开发。
第二钟方法理论上更科学,至少我觉得可以避免我们检测上不科学、不合理的问题。是使用物理剥去镀层,但并不是测试剥去的镀层部分,因为你根本没办法准确判断剥离的完全是镀层部分,很可能会带到基材,而且还会有机械工具可能产生的污染问题。
原理上先连镀层和基材测试整个材料的含量,然后再测试除去完全镀层(可以剥掉些基材,无所谓)的基材中所含的含量。在知道镀层厚度、镀层材料密度、基材厚度、基材材料密度的情况下就可以准确的算出镀层中各元素的含量。如果样品大的话且是一面镀层,基材4cm、镀层10nm。可以用精密加工车床从基材中部切开,分开测试。分别测试基材2cm+镀层10nm和基材2cm的含量,然后通过重量、厚度、密度和仪器读数就可以计算出结果。如果是样品小或者外部全镀的话,就只能选一批内的多个样做测试。这并不违反RoHS,但是数据肯定会不好看,不过级住你的测试报告只对这批被测样品负责,客户的样品有差异,并不是我们的问题。
此方法是采用的计算比较,前提是客户的样品材质要均匀(这点本身就是RoHS里的要求,如果做不到,也是客户的问题)。基材的均匀还比较容易,镀层那么薄,要想做到均匀其实很难。具我所知就算是现在最好的数字化喷镀技术也很难做到,但是客户是绝对不会承认他的技术不好的,所以各位尽管放心。如果客户声明其产品在不同的部位镀层厚度不同,可以分开测试,这也没有问题。
这个方法理论上没有问题,比较科学,可以减轻测试机构的很多不必要的责任和压力。但是其对客户的要求较高,要求提供的镀层密度信息,厚度,均匀性等已经涉嫌其技术机密,可能未必会完全提供。
第三种是电解法,从事镀层厚度和性能测试的可能会有些了解,其原理是针对基材和镀层中主要元素在电解液存在的情况下在电解装置中将镀层电解。不同的电解液,不同的电压和电流会对不同的镀层产生电解作用,而且不会对基材造成任何的影响。电解法在镀层厚度和性能测试中使用广泛、历史悠久,基本上对现有的那些镀层和基材都有合适的解决方法,不需要再去摸索。
但此方法也有其问题,既在电解之后的仪器测试方面。如对锡镀层电解效果很好的三氧化二锑电解液,很多低等级的三氧化二锑中就含有较高Pb含量,这只有靠采购使用高价位的高等级三氧化二锑来解决。总之一句话,首先要保证电解液(也就是空白溶液)中不存在我们要测的重金属元素。另外很多电解液都是高盐性质的,对ICP的测试很不利,至少瓦利安的肯定不行,利曼的ICP对高盐有专门技术,但是没条件试验也不清楚具体情况。在高盐情况下AAS也会有同样问题,曲线斜率严重偏离,所以AAS也不是好的解决办法。
建议用ICP-MS(灵敏度高,检测极限低)测试溶液,通过对电解后高含盐的溶液稀释,达到仪器能检测的程度。这样即使溶液中被测元素含量低,也可以达到较好的精度。总之原则是电解液用的少些,电解接触的面积大些(这样可以多电解下点镀层,被测元素含量高了,溶液稀释后精度也不会太差),溶液稀释倍数要适合(即保证高盐下的雾化效果,又保证测试的精度)。
还有一种方法就是用辉光仪来进行镀层测试。辉光仪目前主要做些结构定性和半定量测试。从理论上来说通过调节仪器参数,完全可以对镀层中重金属做定性分析,半定量,至于定量分析因为应用还少具体进展情况不太清楚。做为筛选技术也是不错的选择,至少速度快,操作少。但其价格很高,主要做为科研用,不知道哪家检测机构会有,我是还没用过。
另外还听有人说用X荧光衍射仪(XRD)做镀层的,不过具我所知那是用来测矿石中矿物相和化合物中晶体结构的。说能做镀层中的元素分析,总觉得不太靠谱
4. 涂层测厚仪测量厚度方法具体有那些
涂层测厚仪是一种便携式测厚仪,能快速、无损伤、精密地测量涂层、镀层的厚度;可用于工程现场,也可用于实验室,通过不同探头的使用,更可满足多种测量需求,涂层测厚仪广泛应用于制造业、金属加工业、化工业、商检等检测领域;是材料保护专业必备的仪器。涂层测厚仪它采用计算机技术,无损检测技术等多项先进技术,无需损伤被测体就能jing确地测量出它的厚度。F型探头可直接测量导磁材料(如铁 、镍)表面上的非导磁覆盖层厚度(如: 油漆 、塑料 、搪瓷 、铜 、铝、锌 、铬等)。可应用于电镀层、油漆层、搪瓷层 、 铝瓦 、铜 瓦 、巴氏合金瓦 、磷化层、纸张的厚度测量,也可用于船体油 漆及水下结构件的附着物的厚度测量。NF型探头可测量非导磁金属基体上的绝 缘覆盖层厚度,如铝、铜、锌、无磁不锈钢等材料表面上的油漆、塑料、橡胶涂层,也可测量铝或铝合金材料的阳极氧化层厚度。下面就为大家介绍涂层测厚仪测量厚度的5种方法:
1.磁性测厚法:适用导磁材料上的非导磁层厚度测量。导磁材料一般为:钢\铁\银\镍。此种方法测量jing确
2.涡流测厚法:适用导电金属上的非导电层厚度测量,此种方法较磁性测厚法精度低。
3.超声波测厚法:目前国内还没有用此种方法测量涂镀层厚度的,国外个别厂家有这样的仪器,适用多层涂镀层厚度的测量或则是以上两种方法都无法测量的场合.但一般价格昂贵、测量精度也不高。
4.电解测厚法:此方法有别于以上三种,不属于无损检测,需要破坏涂镀层,一般精度也不高,测量起来较其他几种麻烦。
5.放射测厚法:此种仪器价格非常昂贵(一般在10万RMB以上),适用于一些特殊场合。
5. 金属材料表面氧化膜厚度怎么测最精确
金相法:
采用金相显微镜检测横断面,以测量金属覆盖层、氧化膜层的局部厚度的方法。一般厚度检测需要大于1um,才能保证测量结果在误差范围之内;厚度越大,误差越小。
库仑法:
适合测量单层和多层金属覆盖层厚度阳极溶解库仑法,包括测量多层体系,如Cu/Ni/Cr以及合金覆盖层和合金化扩散层的厚度。不仅可以测量平面试样的覆盖层厚度,还可以测量圆柱形和线材的覆盖层厚度,尤其适合测量多层镍镀层的金属及其电位差。测量镀层的种类为Au、Ag、Zn、Cu、Ni、dNi、Cr。
X-ray 方法:
适用于测定电镀及电子线路板等行业需要分析的金属覆盖层厚度。 包括:金(Au),银(Ag),锡(Sn),铜(Cu),镍(Ni),铬(Cr)等金属元素厚度。
本测量方法可同时测量三层覆盖层体系,或同时测量三层组分的厚度和成分。
测试原理
金相法:
利用金相显微镜原理,对镀层厚度进行放大,以便准确的观测及测量。
镀层厚度测试库仑法:
利用适当的电解液阳极溶解精确限定面积的覆盖层,电解池电压的急剧变化表明覆盖层实质上完全溶解,经过所耗的电量计算出覆盖层的厚度。因阳极溶解的方法不同,被测量覆盖层的厚度所耗的电量也不同。用恒定电流密度溶解时,可由试验开始到试验终止的时间计算;用非恒定电流密度溶解时,由累积所耗电量计算,累积所耗电量由电量计累计显示。
镀层厚度测试X-ray 方法:
X射线光谱方法测定覆盖层厚度是基于一束强烈而狭窄的多色X射线与基体和覆盖层的相互作用。此相互作用产生离散波长和能量的二次辐射,这些二次辐射具有构成覆盖层和基体元素特征。覆盖层单位面积质量(若密度已知,则为覆盖层线性厚度)和二次辐射强度之间存在一定的关系。该关系首先由已知单位面积质量的覆盖层校正标准块校正确定。若覆盖层材料的密度已知,同时又给出实际的密度,则这样的标准块就能给出覆盖层线性厚度。
镀层厚度测试金相法:
利用金相显微镜原理,对镀层厚度进行放大,以便准确的观测及测量。
镀层厚度测试库仑法:
利用适当的电解液阳极溶解精确限定面积的覆盖层,电解池电压的急剧变化表明覆盖层实质上完全溶解,经过所耗的电量计算出覆盖层的厚度。因阳极溶解的方法不同,被测量覆盖层的厚度所耗的电量也不同。用恒定电流密度溶解时,可由试验开始到试验终止的时间计算;用非恒定电流密度溶解时,由累积所耗电量计算,累积所耗电量由电量计累计显示。
镀层厚度测试X-ray 方法:
X射线光谱方法测定覆盖层厚度是基于一束强烈而狭窄的多色X射线与基体和覆盖层的相互作用。此相互作用产生离散波长和能量的二次辐射,这些二次辐射具有构成覆盖层和基体元素特征。覆盖层单位面积质量(若密度已知,则为覆盖层线性厚度)和二次辐射强度之间存在一定的关系。该关系首先由已知单位面积质量的覆盖层校正标准块校正确定。若覆盖层材料的密度已知,同时又给出实际的密度,则这样的标准块就能给出覆盖层线性厚度。
6. 镀层厚度测量有哪几种方法,各自具备哪些优缺点
1.
镀层测厚仪磁性测厚法:适用层磁材料上的非导磁层厚度测量。导磁材料一般为钢,铁,银,镍。此种方法测量精度高。
2.
镀层测厚仪涡流测厚法:适用导电金属上的非导电层厚度测量。此种较磁性测厚法精度低。
3.
镀层测厚仪电解测厚法:不属于无损检测,需要破坏涂镀层,精度较低,测量起来比较麻烦。
4.
镀层测厚仪放射测厚法:该测试方法测试仪器价格非常昂贵,测试过程复杂,适用于一些特殊场合。
5.
镀层测厚仪超声波测厚法:该测试仪器数量少,价格昂贵,测量精度不高。世界上拥有的国家为数不多,适用多层涂镀层厚度的测量场合
7. 目前金属表面检测的主要方法有哪些
主流金属制品表面缺陷在线检测方法。
一、漏磁检测
漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。
漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。
漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。
漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。
二、红外线检测与技术
红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。
三、超声波探伤技术
超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。接触法是探头与工件表面之间经一层薄的起传递超声波能量作用的耦合剂直接接触。为避免空气层产生强烈反射,在探测时须将接触层间的空气排除干净,使声波入射工件,操作方便,但其对被测工件的表面光洁度要求较高。液浸法是将探头与工件全部浸入于液体或探头与工件之间,局部以充液体进行探伤的方法。脉冲反射法是当脉冲超声波入射至被测工件后,声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。目前,超声波探伤技术已成功应用于金属管道内部的缺陷检测。
四、光学检测法
机器视觉是以图像处理理论为核心,属于人工智能范畴的一个领域,它是以数字图像处理、模式识别、计算机技术为基础的信息处理科学的重要分支,广泛应用于各种无损检测技术中。基于机器视觉的连铸板坯表面缺陷检测方法的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。20世纪70年代中期,El本Jil崎公司就开始研制镀锡板在线机器视觉检测装置 。1988年,美国Sick光电子公司也成功地研制出平行激光扫描检测装置,用以在线检测金属表面缺陷。基于机器视觉的表面在线检测与分类器设计的研究工作目前在国内尚处于起步阶段。1990年,华中理工大学采用激光扫描方法测量冷轧钢板宽度和检测孔洞缺陷,并开发了相应的信号处理电路;1995年又研制出冷轧连铸板坯表面轧洞、重皮和边裂等缺陷检测和最小带宽测量的实验系统。1996年,宝钢与原航天部二院联合研制出冷轧连铸板坯表面缺陷的在线检测系统,并进行了大量的在线试验研究。近年来,北京科技大学、华中科技大学等也研制出较为实用化的在线检测系统。
从检测技术的观点来看,基于机器视觉的钢表面缺陷检测系统面临困境:①要求检测到的缺陷的几何尺寸越来越小,有的甚至小于0.1 mm;② 检测对象可能处于运动状态,导致采集的图像抖动较大;③现场环境较恶劣,往往受烟尘、油污、温度高等因素的影响,引起缺陷图像信噪比下降;④表面缺陷的多样性(如冷轧连铸板坯表面可达100多种),不同缺陷之间的光学特性、电磁特性不同;有的缺陷之间的差异不明显。因此,基于机器视觉的连铸板坯表面缺陷分类器要求具有收敛速度快、鲁棒性好、自学习功能等特点。