导航:首页 > 解决方法 > 解决问题的策略方法

解决问题的策略方法

发布时间:2023-03-05 22:12:51

⑴ 小学数学中解决问题的策略有哪些

要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。

一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。

二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。

关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。

⑵ 常用的解决问题的策略有哪些

解决问题策略的学习,和解决问题的学习是统一的。在小学数学学习中,往往通过例题的学习来使学生掌握解决问题的策略,又通过练习题的应用,使学生掌握解决问题的策略。可以说解决问题的策略是数学例题学习的核心,作为一名教师要知道小学数学中常用的解决问题的策略有哪些?下面尝试列举一二。

一、画图的策略。

由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。

为什么说画图的策略很重要呢?主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。

常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。

二、推理的策略。

数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。

推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。

在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。

三、尝试调整的策略。

尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。

小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。

四、模拟操作的策略。

模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。

当然,解决问题的策略还有很多,在解决一个问题时,往往是多种策略的综合运用。我们在解决问题时,要重视渗透解决问题的策略,进而逐步提升学生解决问题的能力。

⑶ 问题分析的策略有哪些

关于问题分析的策略有哪些

关于问题分析的策略有哪些,在遇见一个问答题的时候应该如何下手才能更尽快的分析问题,然后寻找解决的方法,有什么解决问题的策略呢?下面我带大家简单了解一下关于问题分析的策略有哪些.

问题分析的策略有哪些1

一、画图

儿童因年龄局限,对符号运算性质的推理可能会比较困难,运用作图辅助的策略,让他们在纸上涂涂画画可以拓展思路,帮助他们找到解决问题的关键。因此,画图是一种常见的解决问题的策略。

1、线段图

2、数图

3、集合图(案例:重叠问题)

4、示意图

除了刚才介绍的几种图以外,学生有时根据自己的经验、自己的思维的特点,画出一些让老师意想不到、他所明白的图。(案例:鸡图同笼)

二、列表的策略

列表的策略,有时也叫列举信息的策略。在解决问题的过程中,将问题的条件信息用表格的形式列举出来,往往能对问题的解决起到事半功倍的效果。如租车租船问题可以用列表的方法解决。

三、模拟操作的策略

模拟操作策略,这是一种探索性动手操作活动模拟问题情景,从而获得问题解决的策略(案例:相遇问题)

四、推理的策略

推理也是一种常用的解决问题的策略。过去我们常说的“分析法”和“综合法”都可以看作是逻辑推理的方法。

苏教版介绍的其它几种策略:

列举、还原、替换、转化

形成解决问题的一些基本策略,体验解决问题策略的多样性

解决问题活动的价值不只是获得具体问题的解,更多的是让学生在解决问题的过程中得到发展,其中重要一点是使学生学习一些解决问题的基本策略,体验解决问题策略的多样性。并在此基础上形成自己解决问题的某些策略。

问题分析的策略有哪些2

一、算法式策略

算法式策略是把所有能够解决问题的方法都一一尝试,最终找到解决问题答案的策略。

二、启发式策略

启发式策略是运用已有的知识经验,在问题空间内只做少量的搜索就能解决问题的策略。它又包括:

1、手段-目的分析

把需要达到的问题目标状态分成若干子目标,通过实现一系列的子目标最终达到总目标的策略。

例如:河内塔问题、问题行为图。

2、逆向搜索

从问题的目标状态开始搜索,直到找到通往初始状态的通路或方法。

例如:几何问题的反证法。

3、爬山法

采用一定的方法逐步降低初始状态和目标状态的'距离,以达到解决问题的一种方法。该方法的缺点是容易较佳的方案当成最优的方案。

例如:确定新药的药剂量问题。

4、选择性搜索

选择性搜索就是在解决问题时,根据已知的信息和某些有关规则,选择问题解决的突破口,从突破口中获取更多的信息,以便进一步搜索,直到问题解决。选择性搜索在解决问题时是一种很有效的策略,因为这种方法是从已知条件中搜索出更能接近问题解决答案的方法,从而消除了大量的盲目尝试。

例如:根据所给条件解决问题。

5、类比-迁移策略

类比迁移策略是指把个体先前解决问题的经验应用到解决新问题的策略。这是解决不熟悉问题的一种策略。类比迁移策略中有两类事务有助于问题解决:基础相似物和目标相似物,该方法的缺点是可能受定势的影响,导致多次尝试也无法解决问题。

例如:把解决“将军问题”的方法用到解决“肿瘤问题上”。

注意:同学们应该注意区分爬山法和手段—目的分析,后者可以暂时远离、扩大目标与初始状态之间的差异,而爬山法则不行。

关于启发式记忆口诀:“守墓逆向爬山选搜雷倩”。

⑷ 常见解决问题的策略有( )、( )、( )

画图的策略、推理的策略、尝试调整的策略,模拟操作的策略。

一、画图的策略。

由于小学生认知水平的局限,他们对符号、运算性质的推理可能会发生困难,在解决问题时,引导他们自己在纸上涂一涂、画一画,可以拓展解题思路,找到解题关键,领悟解题方法。因此,画图应该是学生们应该掌握的一种基本的解题策略,尤其用算术法解题的小学生来说,非常重要。

主要是因为这种方法直观、形象,能够帮助学生将抽象的数学问题具体化,复杂的问题简单化。可以弥补小学生思维能力的不足,逐步提升其思维水平。

常用的画图方法有:直观图、线段图、示意图、思维导图、集合图等。

二、推理的策略。

数学教学的价值追求就是学生思维的发展,数学教育的最高境界就是培养人的思维方式。而推理是数学的基本思维方法,也是学生数学学习中经常使用的思维方式。

推理包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比得到某些结果。演绎推理是从定义、公式、法则等出发,进行证明与计算。

在小学数学问题解决的过程中,更多采用合情推理。比如常用的假设法、设数法等。以往数学教学中常说的“分析法”与“综合法”,都是简单的推理。

三、尝试调整的策略。

尝试的策略,简单地说就是你不知道从哪儿开始的时候,可以先猜一猜。猜测的结果如果合理但不合乎要求,再把结果放到问题中去考虑,进一步调整、寻找答案。

小学数学学习中常用的表格法、枚举法、筛选法等,其实就是尝试调整的策略。比如我们在解决鸡兔同笼问题时,用列举鸡和兔的只数算对应腿数,就是这种策略。

四、模拟操作的策略。

模拟操作是通过探索性的动手操作活动来模拟问题情境,从而获得解决问题的一种策略。通过这种策略的训练,可以培养学生的创造性思维。

比如,在解决火车过桥问题时,让学生将文具盒当做桥,将自己用的笔当做火车,自己模拟火车过桥。通过类似问题的模拟,把这种不清晰的数量关系很直观地表现出来,这种问题就容易理解解决了。

其他策略:

1、简化策略

所谓简化就是把复杂的问题简单化,我们在解决问题的过程可能会发现有些结合实际的问题,不管在语言的表述还是信息的传递上可能要说一大堆有关情境的事,我们怎么样把这个生活中的实际问题,把它抽象成数学问题,简化策略就是指在解决问题过程中,先抛开问题的细节,直接抓住问题的关键信息,将抽象的问题简化成简单的形式,解决简化了的问题,再解决复杂的问题,这就是一个简化的过程。

正如着名数学家华罗庚所说的“善于‘退’,足够地‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍”。运用简化策略除了可以将复杂的问题明了、简洁,还可以运用简化策略将陌生的问题转化为熟悉的问题,使我们便于抓住问题的关键部分进行思考从而解决问题。

2、倒推策略

倒推策略也叫还原策略,就是在解决问题时,有些问题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题很容易就解决了。这种从问题出发推理寻求解题途径的方法就是逆推法。

在解决实际问题的过程中让学生了解适合用这个策略来解决问题的特点,学会用“逆推”的策略解决问题的思考方法,增强解决问题的策略的意识,获得解决问题的成功体验,提高学好数学的信心。例如:男生比女生的2倍多10人,男生有50人,求女生有多少人?就可以使用倒推的策略。

3、类比推理策略

当学生面临新问题时,教师及时启发学生用他们所熟悉的知识经验对新问题进行分析、比较,发现其内在联系,从而获得新问题的解决方法。引导学生类比,进行推测和引申,串联了知识点,拓宽了知识面,强化了解决问题的能力。

就如同搭桥引渡,使学生温故知新,能帮助学生有效的认识事物的基本规律,更好地理解问题、提高分析问题和解决问题的能力。

4、转化策略

转化是小学生在学习和解决问题时常用的一种策略,所谓转化就是一个人运用已有的知识的、已经习得的经验,将一些新问题转化成旧有问题进而解答的过程,也就是人的思维方式转变的过程。学生运用转化策略,不仅可以熟练运用旧有知识,又可将新问题的解决方式纳入到旧有的策略中,以形成更完整的知识体系。

曹冲称象的方法就是一个很典型的转化策略。例如:一支钢笔和三支圆珠笔的价钱相等,小明买了5支钢笔和4支铅笔,一共用了38元,求每支钢笔和铅笔各多少元?就可以运用转化的策略来解决,可以把钢笔转化为铅笔,就很容易解决了。

⑸ 小学数学中解决问题的策略有哪些

1)首先要帮助学生提高自信心和学数学的兴趣。
2)其次,老师要帮助学生建立扎实的基础知识,这种知识必须是系统化的,相互联系融会贯通的的知识体系,而不是简单的,孤立的知识点。
3)再次,引导帮助学生建立一种系统化的过程和方法去解题。从阅读理解题意和求解目标开始,分析问题,制定解题计划,应用与题目相关联的知识及相关的解题策略,逐步达到求解目标,验证求解目标,最后还要反思和总结。
4)最后而且是非常重要且易被人们忽视的一点是,要在讲解数学基本知识的同时,帮助引导小学生建立初步的【数学思想方法】,用【数学思想方法】武装学生的头脑,而不能仅仅是就事论事讲解题目的解法。
数学思想方法是人类智慧的结晶,是人类长期积累起来的宝贵财富,是指导我们解数学题的指导思想。一旦学生脑海中建立起来数学思想方法,它不仅适用于小学数学,而且还可以延续到初中,高中和大学,陪伴人的一生。知识是死的,会随着时间的推移或淘汰或淡忘,而通过讲解学习知识过程所建立起来的数学思想方法思维,具有长久的生命力,就像我们所说的:毛泽东思想永放光芒。 数学思想方法和思维建立后,它会融入到我们的血液里,潜移默化地影响我们的思维,伴随人的一生。

⑹ 四年级数学上册第五单元《解决问题的策略》教案

教材分析

解决问题的策略是解决问题必要的一种问题解决思想方法,这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解了同一问题可以有不同的解决方法的基础上学习的。本节课在列表过程中,分析数量关系寻求解决类似归一、归的实际问题的有效方法。学好本节课知识,将为学习用列表等方法解答求两积之和(差)等实际问题奠定知识和思想方法的基础。

学情分析

1、本节课是用列表的方法整理问题情境中的信息,用从已知条件想起或从所求问题想起的方法分析数量关系。例题从三个小朋友买相同笔记本的信息,分两次提出要解决的问题,要求学生找出解决第一个问题的条件并进行整理,通过呈现表格让学生思考怎样解决问题。随后学生很自然的自主分析数量关系,解决第二个问题。

2、在练习中安排了与例题结构相同的实际问题,学生都能运用所学的策略解决问题。

3、在解答第二个问题时,有大部分同学想不到方法,要从小明的信息算出单价,再用除法求出小军能买多少本。这是本节课的障外点。

教学目标

1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

2、通过自主探索、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而提高学生收集并整理信息,发现并分析、解决问题的能力,发展他们的推理能力。

3、通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点和难点

用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。

阅读全文

与解决问题的策略方法相关的资料

热点内容
金湖过滤器安装方法 浏览:341
来的时的使用方法 浏览:343
如何练习动力的方法 浏览:214
养鸡啄毛解决方法 浏览:41
内部审计研究方法 浏览:134
销售眼镜技巧与方法 浏览:609
黑枸杞正确食用方法 浏览:462
如何分辨真假蜂蜜有几种方法 浏览:836
魅族手机微信红包提醒怎么设置在哪里设置方法 浏览:846
五十八乘一百九十八的简便方法 浏览:980
话筒线与喇叭线连接方法 浏览:119
土壤检测的方法 浏览:341
教学方法教师教学工作基本环节 浏览:300
秋繁如何分蜂方法 浏览:380
蚕丝被的好真假鉴别方法 浏览:358
仙客来烂根的治疗方法 浏览:63
臀部松解最佳方法 浏览:261
如何做辣椒油的最好方法 浏览:498
课堂教学方法改革中的问题与对策 浏览:41
白线癌的治疗方法 浏览:641