⑴ 五年级解方程解决问题是怎么样的
由于五年级上册刚学方程,解方程对孩子们来说越简单越好,所以如果这题设变化后每只盒子里的小球数是x个,那么算起来就有点头大。
因为第三只盒子变动前是x÷2个,这样算起来真麻烦。所以最好是变动后每只盒子有2x个小球,则变动前(复原)第一只盒子有2x+2个小球,第二只盒子有2x-2个小球,第三只盒子有x个小球,第四只盒子有4x个小球,变动前4只盒子的小球总数是45个,从而求出x=5。
列方程解应用题的方法:
1) 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
2)分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
⑵ 五年级解方程简便方法
五年级上册解简易方程之方法及难点归纳
重点概念:方程,方程的解,解方程,等式的基本性质
要点回顾:
“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。(方程的解即是如同“X=6”的形式)
“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:
先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:
以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程
只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程
两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。注意要“带符号移动”,增添括号时还要注意符号的变化。
则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。
四、其它方程(方程两边都出现未知数的情况)
要解决两边都出现未知数的方程,就必须通过“等式的基本性质”,消去一边的未知数,成为我们熟悉的一般形式。因此,常常要将若干个未知数看成整体,共同加上或者减去。
难点:方程两边都有未知数,且未知数是除数(即非0),则可以同时乘以未知数(这时方程的两边都各看作一个整体,里面的每一项都要乘以未知数),再消去一边的未知数。
⑶ 怎样解方程五年级
在小学数学中方程可能是很多同学的一个难点,那么解方程有哪些技巧和方法呢,今天我们就来给大家做一个总结,供大家参考。
首先我们要知道方程的意义是,表示相等关系的式子叫等式,含有未知数的等式叫做方程。由此可见方程必须具备两个条件:一是等式;二是等式中必须含有未知数。
一、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。
3、根据乘法中各部分之间的关系解方程
在乘法中,一个因数=积/另一个因数
例如:列出方程,并求出方程的解。
4、根据除法中各部分之间的关系解方程。
解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
以上几种方法就是小学数学中常用的方法和技巧,希望同学们多多练习,熟练掌握。
⑷ 五年级解方程怎么解
五年级解方程有以下几种方法:
1、同加同减解不变。
2、方程两边同乘一个数解不变(乘的数不为零)。
3、方程两边同除以一个数解不变(除以的数不为零)。
解方程小技巧:
1、根据除法中各部分之间的关系解方程。解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
2、公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
⑸ 五年级数学解方程解法和思路
五年级的解方程是依据这些方法:
加数+加数=和可以推出加数=和-另一个加数
被减数-减数=差可以推出被减数=减数+差,减数=被减数-差
乘数x乘数=积可以推出乘数=积÷另一个乘数
被除数÷除数=商可以推出被除数=除数x商
除数=被除数÷商
如果是被除数÷除数=商有余数
故被除数=除数x商+余数
除数=(被除数-余数)÷商
商=(被除数-余数)÷除数
根据上面的思路就可以解出很多道方程题
最简单的x+2=4算出x=4-2=2
如果是含有多个x和数的五年级数学一元一次方程比如x+2x+x+5+3=20 先把含有x的未知项移项,x就是1x,算出4x,带有数的移项,依据上面的定义加数+加数=和可以解出加数=和-另一个加数
即20-3-5=12算出4x=12,x=12÷4=3
如果方程左右两边都有数和未知数x,移项时要改变符号
比如6x-9=3x
左右移项右边3x正变负,变成6x-3x,-9移到右边变成正9,即3x=9,x=3
有括号要根据加减法交换律,乘除法交换律,结合律还有分配律去解方程
⑹ 怎样解方程五年级
五年级解方程有以下几种方法:
1、同加同减解不变。
2、方程两边同乘一个数解不变(乘的数不为零)。
3、方程两边同除以一个数解不变(除以的数不为零)。
解方程式方法:
1、利用等式的性质解方程:
因为方程是等式,所以等式具有的性质方程都具有。方程的左右两边同时加上或减去同一个数,方程的解不变。方程的左右两边同时乘同一个不为0的数,方程的解不变。方程的左右两边同时除以同一个不为0的数,方程的解不变。
2、根据加减乘除法各部分之间的关系解方程:
根据加法中各部分之间的关系解方程。根据减法中各部分之间的关系解方程在减法中,被减速=差+减数。根据乘法中各部分之间的关系解方程在乘法中,一个因数=积/另一个因数例如:列出方程,并求出方程的解。
3、根据除法中各部分之间的关系解方程:
解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
⑺ 五年级怎样解方程
多想,多问,多做题,用几种方法分别做题,锻炼大脑的灵活性,做到这几点基本可以学好。
一、方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
二、通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
三、解方程的方法
1.去分母:这是解一元一次方程的首要步骤,有分母的一元一次方程首先要去分母,当然如果方程中没有分母的话可以省去此步骤。
2.去括号:去除分母之后就该完成括号的去除了,如果有分母的话先去分母,在去除括号,当然没有括号的话可以省去此步骤。
3.移项:这是很重要的一个步骤,每个一元一次方程都会有的一步,就是把同类型的数据移动到同一边,换句话说就是把数字移动到等号的一边,未知数移动到等号的另一边,我们习惯把未知数移动到等号的左边。
/iknow-pic.cdn.bcebos.com/2934349b033b5bb5ac8ff0913ad3d539b600bc01"target="_blank"title="点击查看大图"class="illustration_alink">/iknow-pic.cdn.bcebos.com/2934349b033b5bb5ac8ff0913ad3d539b600bc01?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="//www.lostcanyon.org/way_2934349b033b5bb5ac8ff0913ad3d539b600bc01"/>
4.合并同类项:把多项式中同类项合成一项,叫做合并同类项,同类项的系数相加,所得结果作为系数,字母和字母的指数不变。是解一元一次方程中的临门一脚,是很重要的一个步骤,合并同类项的时候要遵循合并同类项法则。
/iknow-pic.cdn.bcebos.com/738b4710b912c8fc1ba026a2f0039245d688210a"target="_blank"title="点击查看大图"class="illustration_alink">/iknow-pic.cdn.bcebos.com/738b4710b912c8fc1ba026a2f0039245d688210a?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="//www.lostcanyon.org/way_738b4710b912c8fc1ba026a2f0039245d688210a"/>
5.最后一步,只要把未知数的系数化为一,所得的结果就是这个一元一次方程的解,也就是我们最后需要得到的结果。
/iknow-pic.cdn.bcebos.com/e4dde71190ef76c63ec028449116fdfaaf51674b"target="_blank"title="点击查看大图"class="illustration_alink">/iknow-pic.cdn.bcebos.com/e4dde71190ef76c63ec028449116fdfaaf51674b?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="//www.lostcanyon.org/way_e4dde71190ef76c63ec028449116fdfaaf51674b"/>
⑻ 解方程的方法五年级下
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
例如:3+x=18
解:x=18-3
x=15
5、去括号:运用去括号法则,将方程中的括号去掉。
4x+2(79-x)=192
解:
4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。
(8)五年级解方程解决问题多种方法扩展阅读
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(1)a+c=b+c
(2)a-c=b-c
性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c
或a/c=b/c
性质3:若a=b,则b=a(等式的对称性)。
性质4:若a=b,b=c则a=c(等式的传递性)。
⑼ 方程式怎么解五年级
解方程步骤:
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。
例如:
3+x=18
解:x=18-3
x=15
(9)五年级解方程解决问题多种方法扩展阅读:
解方程方法:
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
5、去括号:运用去括号法则,将方程中的括号去掉。
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。