导航:首页 > 解决方法 > 蛋白定量检测方法

蛋白定量检测方法

发布时间:2023-02-19 03:41:19

❶ 蛋白质定量测量方法除双缩脲法外,还有哪些测定方法

蛋白质的定量定主要有直接紫外吸收法、Bradford法和Lorry法三种。

蛋白质中存在着含有共轭双键的酪氨酸和色氨酸,所以任何一个蛋白质都具有280nm附近的紫外吸收峰,在此波长范围内,蛋白质溶液的光密度OD280nm与其浓度呈正比关系。

改良的Bradford法,蛋白质与染料考马斯亮蓝G-250结合,在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。

Lorry法。蛋白质与碱性铜溶液中的Cu2+络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与福林试剂反应,产生蓝色,在一定浓度范围内,其颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。

中国药典推荐的方法是Lorry法。蛋白质与碱性铜溶液中的Cu2+络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与福林试剂反应,产生蓝色,在一定浓度范围内,其颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。
美国fda药典推荐的是Bradford法,蛋白质与染料考马斯亮蓝G-250结合,在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。
两者大多数情况下是都能给较为精确的对蛋白质定量。

❷ 蛋白质含量测定

应该是问蛋白质含量测定的方法吧。方法有以下几种:
1、直接测定UV法。
2、凯氏定氮法。
3、双缩脲法。
4、酚试剂法。
5、紫外吸收法。
6、BCA法。
7、Lowry法。
8、考马斯亮蓝法。
9、Bradford法测定试剂盒。
蛋白质含量增高,常见于多发性骨髓瘤患者,主要是异常球蛋白增加;血浆浓缩也可使蛋白质含量增加,如急性脱水、外伤性休克、肾病等。

如何做24小时尿蛋白定量检查

医生回答24小时尿蛋白定量的问题:
在正常情况下,肾小球只能通过分子量较小的物质。健康儿童每天尿中排出的蛋白质少于40毫克,这一含量用蛋白质定性试验的方法一般不能检出。患某些疾病时,蛋白质漏出增加,则可被检出。所以尿蛋白定性报告的结果是粗略的,如要精确地测出患儿小便中排出的蛋白量,便需采用24小时尿蛋白定量检验。
24小时尿蛋白定量如何收集:
要采集做这项检验的小便标本,必须在当日上午8时把膀胱排空,然后计时,将至次日8时为止的全部尿液都收集起来,准确测量尿液的总量,记录下来,然后搅拌均匀,取100~200毫升送检。为防小便变质,可在集尿时于便盆中加入防腐剂(如40%甲醛液1毫升)。还须注意,收集尿的容器要清洁,不能将大便、女孩阴道分泌物等混入尿液。
临床上经过24小时尿蛋白定量检查发现增高则常见于以下一些疾病:
①肾脏疾病。急性肾炎、慢性肾炎、肾病综合征、肾盂肾炎、红斑狼疮、肾结核、肾结石、肾动脉硬化等。
②肾循环障碍。如充血、贫血、心功能不全等。
③其他疾病。如休克、失水、感染、中毒、白血病及肾脏移植等。
此外,还有一种生理性蛋白尿,又称功能性蛋白尿,系指泌尿系统并无器质性病变,尿内暂时出现蛋白而言。如剧烈运动、长期的直立或仰卧,过于激动、高热、高温与受冷等。此种蛋白尿定量不超过每日500毫克,且为一过性。
从以上的分析中可以得出,24小时尿蛋白定量增高在衡量是否是肾病有着重要的作用,您儿子出现尿蛋白、尿潜血阳性,提示发生肾病的可能性机会较大,24小时尿蛋白定量经过检查出现增高现象则确诊肾病的机会加大,但为了更明确诊断建议您做红细胞形态检测、肾功能检查,有条件做肾穿刺活检,明确诊断,判断预后。

❹ 常用来测定蛋白质含量的方法有哪些优缺点是什么

1、凯氏定氮法

凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。

由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

优点:可用于所有食品的蛋白质分析中;操作相对比较简单;实验费用较低;结果准确,是一种测定蛋白质的经典方法;用改进方法(微量凯氏定氮法)可测定样品中微量的蛋白质。

缺点:凯氏定氮法只是一个氧化还原反应,把低价氮氧化并转为氨盐来测定,而不能把高价氮还原为氮盐的形式,所以不可以测出物质中所有价态的氮含量。

2、双缩脲法

双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。

当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。

优点:测定速度较快,干扰物质少,不同蛋白质产生的颜色深浅相近。

缺点:①灵敏度差; ② 三羟甲基氨基甲烷、一些氨基酸和EDTA等会干扰该反应。

3、酚试剂法

取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。

优点:灵敏度高,对水溶性蛋白质含量的测定很有效。

缺点:①费时,要精确控制操作时间;②酚法试剂的配制比较繁琐。

4、紫外吸收法

大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。

取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。

优点:简便、灵敏、快速,不消耗样品,测定后能回收。 

缺点:①测定蛋白质含量的准确度较差,专一性差; ②干扰物质多,若样品中含有嘌呤、嘧啶及核酸等能吸收紫外光的物质,会出现较大的干扰。

5、考马斯亮蓝法

考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。

在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。

一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。

优点:灵敏度高,测定快速、简便,干扰物质少,不受酚类、游离氨基酸和缓冲剂、络合剂的影响,适合大量样品的测定。

缺点:由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此用于不同蛋白质测定时有较大的偏差。

❺ 蛋白质的定量测定方法

一、微量凯氏(kjeldahl)定氮法

样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:

NH2 CH2 COOH+3H2 SO4 ――2CO2 +3SO2 +4H2O+NH3 (1)

2NH3 +H2 SO4 ――(NH4 )2 SO4 (2)

(NH4 )2 SO4 +2NaOH――2H2 O+Na2 SO4 +2NH3 (3)

反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白

氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)

(一)实验原理

双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材

1.试剂:

(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。

(2)双缩脲试剂:称以1.50克硫酸铜(CuSO4•5H2O)和6.0克酒石酸钾钠(KNaC4H4O6•4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。

2.器材:

可见光分光光度计、大试管15支、旋涡混合器等。

(三)操作方法

1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。

2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。

三、folin―酚试剂法(lowry法)

(一)实验原理

这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即folin―酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是:在碱性条件下,蛋白质中的肽键与铜结合生成复合物。folin―酚试剂中的磷钼酸盐―磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。

folin―酚试剂法最早由lowry确定了蛋白质浓度测定的基本步骤。以后在生物化学领域得到广泛的应用。这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。对双缩脲反应发生干扰的离子,同样容易干扰lowry反应。而且对后者的影响还要大得多。酚类、柠檬酸、硫酸铵、tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。含硫酸铵的溶液,只须加浓碳酸钠―氢氧化钠溶液,即可显色测定。若样品酸度较高,显色后会色浅,则必须提高碳酸钠―氢氧化钠溶液的浓度1~2倍。

进行测定时,加folin―酚试剂时要特别小心,因为该试剂仅在酸性ph条件下稳定,但上述还原反应只在ph=10的情况下发生,故当folin一酚试剂加到碱性的铜―蛋白质溶液中时,必须立即混匀,以便在磷钼酸―磷钨酸试剂被破坏之前,还原反应即能发生。

此法也适用于酪氨酸和色氨酸的定量测定。

此法可检测的最低蛋白质量达5mg。通常测定范围是20~250mg。

❻ 测定蛋白质的定量的方法有哪些及其原理各是什么

常用的蛋白质纯化方法有离子交换色谱、亲和色谱、电泳、疏水色谱等等
离子交换色谱:蛋白质和氨基酸一样会两性解离,所带电荷决定于溶液ph。ph小于pi时蛋白质带正电,ph大于pi时蛋白质带负电。不同蛋白质等电点的蛋白质在同一个溶液中,表面电荷情况不同。离子交换就是利用不同蛋白质在同一溶液中表面电荷的差异来实现分离的。
亲和色谱:生物大分子有一个特性,某些分子或基因对它们有特异性很强的吸附作用。如镍柱中ni可以与his标签的蛋白结合,这种只针对一种或一类物质的吸附就是亲和色谱的原理。
电泳:sds-聚丙烯酰胺凝胶电泳,sds能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的sds溶液中,
与sds分子按比例结合,形成带负电荷的sds-蛋白质复合物,这种复合物由于结合大量的sds,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于sds与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。
疏水色谱:疏水色谱基于蛋白质表面的疏水区与介质疏水配体间的相互作用,在高浓度盐作用下,蛋白质的疏水区表面上有序排列的水分子通过盐离子的破坏被释放,裸露的疏水区与疏水配体相互作用而被吸附。疏水色谱就是利用样品中各组分在色谱填料上配基相互作用的差异,在洗脱时各组分移动速度不同而达到分离的目的。随着盐离子浓度的降低,疏水作用降低,蛋白质的水化层又形成,蛋白质被解吸附。

❼ 蛋白质含量的测定方法有哪些

蛋白质含量测定的方法有微量凯氏定氮法、双缩脲法、folin―酚试剂法、考马斯亮兰法、紫外吸收法等。

1、微量凯氏定氮法:含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

2、双缩脲法:双缩脲是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。

3、folin―酚试剂法:这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难,近年来逐渐被考马斯亮兰法所取代。

4、考马斯亮兰法:1976年由bradford建立的考马斯亮兰法,是根据蛋白质与染料相结合的原理设计的。这一方法是目前灵敏度最高的蛋白质测定法。

5、紫外吸收法:蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。

❽ 蛋白质定量测定的方法有哪些

定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。考马斯亮蓝法(Bradford法)。
凯氏定氮 灵敏度低,适用于0.2~ 1.0mg氮,误差为 ±2% 费时
8~10小时 将蛋白氮转化为氨,用酸吸收后滴定 非蛋白氮(可用三氯乙酸沉淀蛋白质而分离) 用于标准蛋白质含量的准确测定;干扰少;费时太长
双缩脲法(Biuret法) 灵敏度低 1~20mg 中速 20~30分钟 多肽键+碱性Cu2+®紫色络合物 硫酸铵;Tris缓冲液;某些氨基酸 用于快速测定,但不太灵敏;不同蛋白质显色相似
紫外吸收法 较为灵敏 50~100mg 快速 5~10分钟 蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收 各种嘌吟和嘧啶;
Folin-酚试剂法(Lowry法) 灵敏度高 ~5mg 慢速 40~60分钟 双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原 硫酸铵;Tris缓冲液;甘氨酸;
各种硫醇 耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化
考马斯亮蓝法(Bradford法) 灵敏度最高 1~5mg 快速5~15分钟 考马斯亮蓝染料与蛋白质结合时,其lmax由465nm变为595nm 强碱性缓冲液;
SDS 最好的方法;干扰物质少;颜色稳定; 颜色深浅随不同蛋白质变化

❾ 蛋白质含量的测定方法

蛋白质含量的十种测定方法如下:

三、双缩脲法:

实验原理:双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。

四、BCA法:

实验原理:BCA检测法是Lowry测定法的一种改进方法。与Lowry方法相比,BCA法的操作更简单,试剂更加稳定,几乎没有干扰物质的影响,灵敏度更高(微量检测可达到0.5μg/ml),应用更加灵活。蛋白质分子中的肽键在碱性条件下能与Cu2+络合生成络合物,同时将Cu2+还原成Cu+。

二喹啉甲酸及其钠盐是一种溶于水的化合物,在碱性条件下,可以和Cu+结合生成深紫色的化合物,这种稳定的化合物在562nm处具有强吸收值,并且化合物颜色的深浅与蛋白质的浓度成正比。故可用比色的方法确定蛋白质的含量。

五、Lowry法:

实验原理:蛋白质在碱性溶液中其肽键与Cu2+螯合,形成蛋白质一铜复合物,此复合物使酚试剂的磷钼酸还原,产生蓝色化合物,在一定条件下,利用蓝色深浅与蛋白质浓度的线性关系作标准曲线并测定样品中蛋白质的浓度。

六、考马斯亮蓝法:

实验原理:考马斯亮蓝法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。考马斯亮蓝G―250存在着两种不同的颜色形式,红色和蓝色。它和蛋白质通过范德华力结合,在一定蛋白质浓度范围内,蛋白质和染料结合符合比尔定律。

此染料与蛋白质结合后颜色有红色形式和蓝色形式,最大光吸收由465nm变成595nm,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。蛋白质和染料结合是一个很快的过程,约2min即可反应完全,呈现最大光吸收,并可稳定1h,之后,蛋白质―染料复合物发生聚合并沉淀出来。

七、凯氏定氮法:

实验原理:凯氏定氮法用于测定有机物的含氮量,若蛋白质的含氮量已知时,则可用此法测定样品中蛋白质的含量。当蛋白质与浓硫酸共热时,其中的碳、氢两元素被氧化成二氧化碳和水,而氮则转变成氨,并进一步与硫酸作用生成硫酸铵。此过程通常称为“消化”。

但是,这个反应进行得比较缓慢,通常需要加入硫酸钾或硫酸钠以提高反应液的沸点,并加入硫酸铜作为催化剂,以促进反应的进行。

八、Lowry法测定试剂盒:

Folin酚试剂法包括两步反应:第一步是在碱性条件下,蛋白质与铜作用生成蛋白质-铜络合物;第二步是此络合物将Folin试剂还原,产生深蓝色,颜色深浅与蛋白质含量成正比。定量范围为5~100μg/ml蛋白质。Folin试剂显色反应由酪氨酸、色氨酸和半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物均有干扰作用。

此外,不同蛋白质因酪氨酸、色氨酸含量不同而使显色强度稍有不同。

九、BCA法测定试剂盒:

碱性条件下,蛋白将Cu2+还原为Cu+,Cu+与BCA试剂形成紫颜色的络合物,测定其在562nm处的吸收值,并与标准曲线对比,即可计算待测蛋白的浓度。常用浓度的去垢剂SDS,TritonX-100,Tween不影响检测结果,但受螯合剂(EDTA,EGTA)、还原剂(DTT,巯基乙醇)和脂类的影响。

实验中,若发现样品稀释液或裂解液本身背景值较高,可试用Bradford蛋白浓度测定试剂盒。

十、分光光度计法。

1、取八支(或者更多)干净的10ml离心管,标记上号。

2、取100ulBSA,加PBS2.4ml稀释至终浓度为0.2mg/ml。

3、5×G250染色液使用前请颠倒3-5次混匀,取10ml5×G250染色液,加入40ml双蒸水,混匀成1×G250染色液,此1×G250染色液可在4℃保存一周。

4、按下表加入试剂(以每孔5ml计,多余的用来清洗比色皿)。

阅读全文

与蛋白定量检测方法相关的资料

热点内容
女装摩托车仪表安装方法 浏览:29
木折叠门吊轮安装方法 浏览:955
脉法针灸计算方法 浏览:685
电脑内存插条使用方法 浏览:372
电脑系统快捷键设置方法 浏览:238
自动化导轨垂直度测量方法 浏览:29
都市天际线水电解决方法 浏览:39
在家里洗衣服的正确方法技巧 浏览:33
增加电容的计算方法 浏览:866
科学家研究病毒检验方法 浏览:733
魅族4智能桌面在哪里设置方法 浏览:830
快速治疗痘印的方法 浏览:88
古代钱的鉴别方法 浏览:151
圈树铁丝围栏网厂家的计算方法 浏览:182
弱声的正确方法和技巧 浏览:723
制作洞洞乐最简单的方法 浏览:894
纸条造型的方法还有哪些 浏览:285
普通玛瑙手串鉴别最简单方法图片 浏览:472
肿瘤绿色治疗技术方法 浏览:948
小熊料理机的使用方法 浏览:457