A. 如何用无机化学方法检验Cd离子
分析化学鉴定Cd2+的方法:用适量氨水和盐酸调整溶液pH约为0.5,然后滴加几滴5%的硫代乙酰胺,沸水浴中加热,观察是否有黄色沉淀生成。如果有的话,说明溶液中含有Cd2+。
原理如下:Cd2+与S2-会生成黄色CdS沉淀,此沉淀不溶于稀盐酸,并且颜色与其他硫化物不同,可作为Cd2+的特征沉淀。硫代乙酰胺溶解加热水解生成H2S,与Cd2+反应。
不宜直接使用H2S或Na2S检验,因为如果溶液中含有氧化剂(如硝酸根等),则在酸性溶液中会氧化H2S或Na2S,生成少量单质S,而单质S也是黄色沉淀,会干扰实验观察。
B. 如果有一个地下水的水样但是想用做生活饮用水,我想请问一下,这个水样应该测什么指标
不明白你为什么拒绝国家标准,应该是按照国家的地下水水质标准检测、分类确定是否可以作为饮用水吧。达到Ⅲ类的就可以饮用。
中华人民共和国国家标准 地下水水质标准
--------------------------------------------------------------------------------
Quality standard for ground water
GB/T 14848-93
国家技术监督局1993-12-30批准 1994-10-01实施
1 引言
c为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,特制订本标准。 本标准是地下水勘查评价、开发利用和监督管理的依据。
2 主题内容与适用范围
2.1 本标准规定了地下水的质量分类,地下水质量监测、评价方法和地下水质量保护。
2.2 本标准适用于一般地下水,不适用于地下热水、矿水、盐卤水。
3 引用标准
GB 5750 生活饮用水标准检验方法
4 地下水质量分类及质量分类指标
4.1 地下水质量分类 依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、工业、农业用水水质最高要求,将地下水质量划分为五类。
Ⅰ类 主要反映地下水化学组分的天然低背景含量。适用于各种用途。
Ⅱ类 主要反映地下水化学组分的天然背景含量。适用于各种用途。
Ⅲ类 以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。
Ⅳ类 以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。
Ⅴ类 不宜饮用,其他用水可根据使用目的选用。
4.2 地下水质量分类指标(见表1)
表1 地下水质量分类指标 项目序号 类别标准值项目 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类
1 色(度) ≤5 ≤5 ≤15 ≤25 >25
2 嗅和味 无 无 无 无 有
3 浑浊度(度) ≤3 ≤3 ≤3 ≤10 >10
4 肉眼可见物 无 无 无 无 有
5 pH 6.5~8.5 5.5~6.58 5~9 <5.5 >9
6 总硬度(以CzCO3,计)(mg/L) ≤150 ≤300 ≤450 ≤550 >550
7 溶解性总固体(mg/L) ≤300 ≤500 ≤1000 ≤2000 >2000
8 硫酸盐(mg/L) ≤50 ≤150 ≤250 ≤350 >350
9 氯化物(mg/L) ≤50 ≤150 ≤250 ≤350 >350
10 铁(Fe)(mg/L) ≤0.1 ≤0.2 ≤0.3 ≤1.5 >1.5
11 锰(Mn)(mg/L) ≤0.05 ≤0.05 ≤0.1 ≤1.0 >1.0
12 铜(Cu)(mg/L) ≤0.01 ≤0.05 ≤1.0 ≤1.5 >1.5
13 锌(Zn)(mg/L) ≤0.05 ≤0.5 ≤1.0 ≤5.0 >5.0
14 钼(Mo)(mg/L) ≤0.001 ≤0.01 ≤0.1 ≤0.5 >0.5
15 钴(Co)(mg/L) ≤0.005 ≤0.05 ≤0.05 ≤1.0 >1.0
16 挥发性酚类(以苯酚计)(mg/L) ≤0.001 ≤0.001 ≤0.002 ≤0.01 >0.01
17 阴离子合成洗涤剂(mg/L) 不得检出 ≤0.1 ≤0.3 ≤0.3 >0.3
18 高锰酸盐指数(mg/L) ≤1.0 ≤2.0 ≤3.0 ≤10 >10
19 硝酸盐(以N计)(mg/L) ≤2.0 ≤5.0 ≤20 ≤30 >30
20 亚硝酸盐(以N计)(mg/L) ≤0.001 ≤0.01 ≤0.02 ≤0.1 >0.1
21 氨氮(NH4)(mg/L) ≤0.02 ≤0.02 ≤0.2 ≤0.5 >0.5
22 氟化物(mg/L) ≤1.0 ≤1.0 ≤1.0 ≤2.0 >2.0
23 碘化物(mg/L) ≤0.1 ≤0.1 ≤0.2 ≤1.0 >1.0
24 氰化物(mg/L) ≤0.001 ≤0.01 ≤0.05 ≤0.1 >0.1
25 汞(Hg)(mg/L) ≤0.00005 ≤0.0005 ≤0.001 ≤0.001 >0.001
26 砷(As)(mg/L) ≤0.005 ≤0.01 ≤0.05 ≤0.05 >0.05
27 硒(Se)(mg/L) ≤0.01 ≤0.01 ≤0.01 ≤0.1 >0.1
28 镉(Cd)(mg/L) ≤0.0001 ≤0.001 ≤0.01 ≤0.01 >0.01
29 铬(六价)(Cr6+)(mg/L) ≤0.005 ≤0.01 ≤0.05 ≤0.1 >0.1
30 铅(Pb)(mg/L) ≤0.005 ≤0.01 ≤0.05 ≤0.1 >0.1
31 铍(Be)(mg/L) ≤0.00002 ≤0.0001 ≤0.0002 ≤0.001 >0.001
32 钡(Ba)(mg/L) ≤0.01 ≤0.1 ≤1.0 ≤4.0 >4.0
33 镍(Ni)(mg/L) ≤0.005 ≤0.05 ≤0.05 ≤0.1 >0.1
34 滴滴滴(μg/L) 不得检出 ≤0.005 ≤1.0 ≤1.0 >1.0
35 六六六(μg/L) ≤0.005 ≤0.05 ≤5.0 ≤5.0 >5.0
36 总大肠菌群(个/L) ≤3.0 ≤3.0 ≤3.0 ≤100 >100
37 细菌总数(个/L) ≤100 ≤100 ≤100 ≤1000 >1000
38 总σ放射性(Bq/L) ≤0.1 ≤0.1 ≤0.1 >0.1 >0.1
39 总β放射性(Bq/L) ≤0.1 ≤1.0 ≤1.0 >1.0 >1.0
根据地下水各指标含量特征,分为五类,它是地下水质量评价的基础。以地下水为水源的各类专门用水,在地下水质量分类管理基础上,可按有关专门用水标准进行管理。
5 地下水水质监测
5.1 各地区应对地下水水质进行定期检测。检验方法,按国家标准GB 5750《生活饮用水标准检验方法》执行。5.2 各地地下水监测部门,应在不同质量类别的地下水域设立监测点进行水质监测,监测频率不得少于每年二次(丰、枯水期)。5.3 监测项目为:pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、大肠菌群,以及反映本地区主要水质问题的其它项目。
6 地下水质量评价
6.1 地下水质量评价以地下水水质调查分析资料或水质监测资料为基础,可分为单项组分评价和综合评价两种。
6.2 地下水质量单项组分评价,按本标准所列分类指标,划分为五类,代号与类别代号相同,不同类别标准值相同时,从优不从劣。例:挥发性酚类Ⅰ、Ⅱ类标准值均为0.001mg/L,若水质分析结果为0.001mg/L时,应定为Ⅰ类,不定为Ⅱ类。
6.3 地下水质量综合评价,采用加附注的评分法。具体要求与步骤如下:
6.3.1 参加评分的项目,应不少于本标准规定的监测项目,但不包括细菌学指标。
6.3.2 首先进行各单项组分评价,划分组分所属质量类别。
6.3.3 对各类别按下列规定(表2)分别确定单项组分评价分值Fi。
表2
类别 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ
Fi 0 1 3 6 10
6.3.4 按式(1)和式(2)计算综合评价分值F。
式中:-各单项组分评分值Fi的平均值;
Fmax-单项组分评价分值Fi中的最大值;
n-项数
6.3.5 根据F值,按以下规定(表3)划分地下水质量级别,再将细菌学指标评价类别注在级别定名之后。如“优良(Ⅱ类)”、“较好(Ⅲ类)”。
表3
级别 优良 良好 较好 较差 极差
F <0.80 0.80~<2.50 2.50~<4.25 4.25~<7.20 >7.20
6.4 使用两次以上的水质分析资料进行评价时,可分别进行地下水质量评价,也可根据具体情况,使用全年平均值和多年平均值或分别使用多年的枯水期、丰水期平均值进行地评价。
6.5 在进行地下水质量评价时,除采用本方法外,也可采用其他评价方法进行对比。
7 地下水质量保护
7.1 为防止地下水污染和过量开采、人工回灌等引起的地下水质量恶化,保护地下水水源,必须按《中华人民共和国水污染污染防治法》和《中华人民共和国水法》有关规定执行。
7.2 利用污水灌溉、污水排放、有害废弃物(城市垃圾、工业废渣、核废料等)的堆放和地下处置,必须经过环境地质可行性论证及环境影响评价,征得环境保护部门批准后方能施行。
C. 若检测自来水中的镉cd的含量应采用哪种仪器分析方法
1、原子吸收分光光度法,包括火焰原子化法和电热原子化法;
2、分光光度法,主要是镉试剂分光光度法。
检测指标:
1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。
2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。
(3)地下水中cd什么检测方法扩展阅读:
消毒方法:
自来水消毒大都采用氯化法,公共给水氯化的主要目的就是防止水传播疾病,这种方法推广至今有100多年历史了,具有较完善的生产技术和设备,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。
氯气溶于水,与水反应生成次氯酸和盐酸,在整个消毒过程中起主要作用的是次氯酸。对产生臭味的无机物来说,它能将其彻底氧化消毒,对于有生命的天然物质如水藻,细菌而言,它能穿透细胞壁,氧化其酶系统(酶为生物催化剂)使其失去活性,使细菌的生命活动受到障碍而死亡。
D. 地下水污染的探测方法
地下水的污染检测要比地表水复杂得多。若采取只从观测井中取样的常规采样分析方法,无法了解深部和外部的渗漏情况,在深度和广度上均有相当的局限性。必须配合相应的地下探测方法——环境地球物理方法。
该方法的基本原理均是通过检测渗滤液渗漏后地下发生的物性变化来进一步分析判断渗滤液的渗漏范围和污染程度。当地下水受到污染后,视电阻率或电导率发生变化,由检测到的异常特征来确定地下水污染的范围、污染通道及流向等。
受高浓度导电离子污染的地下水与未受污染的天然水电阻率差别较大,探测区分是比较容易的。对于微量金属,非金属污染或10-9级的有机物质污染地下水的探测并不那么容易,探测方法还比较有限,是许多学者正在研究的问题。但也有许多成功范例。主要决定于污染物质种类、浓度和地质条件。
对于有机污染物,一般采用探地雷达方法,土壤气体分析法、自然电场法和电阻率方法。
a.探地雷达是根据介质储存电荷能力不同(即介电常数不同)来区分污染物质。渗入地下水的石油或有机化学物质,有时含量很少,但漂浮在地下水的上层,对探地雷达有较好的界面反应。当导电率低于10 mS/m,使用探地雷达效果最好。如果是粘土层,则比较不利。
b.挥发性土壤气体探测法(VOC3):石油和三氯乙烯、四氯化碳等都属于挥发性气体,在地温、细菌或与其他地下水中物质作用下,进行转化,或直接挥发成气体,由土壤孔隙或地下裂隙向地表运移。用取样器提取土壤气体样品,然后用气相色谱分析仪测量气体。其优点是可同时分析多种气体,或使用特制的便携式探测仪,直接探测这类气体。但往往一种仪器只能探测一种气体,优点是快速,可以在现场了解污染分布范围。探地雷达可以确定污染物的地下深度,而VOC3方法只能提供平面分布范围。在条件有利的情况下,可以给出污染物的浓度。图11.2.1是潜水面下三氯乙烯和油污染的VOC3方法探测结果的平面分布图。
图11.2.1 VOC3法探测潜水面下三氯乙烯
c.电阻率方法:相当多的有机污染物和部分无机污染物是不导电的,如石油中的烃类物质都是不导电的,如用电阻率方法探测就有一定难度,而瑞森(Renson)等在1997年用由直流(DC)电阻率方法派生出的偏移测量方法成功地探测石油烃类物质污染。对于这类不溶于水的污染物(油、四氯化碳等氯化物)在有利的地质条件下,使用激发极化法也能取得有效的成果。
对于地下水中无机污染物质,如金属与氯离子等,由于它们的导电性能好,浓度越高导电性越好,越有利于利用电阻率方法进行探测。
图11.2.2为某垃圾填埋场高密度电阻率检测的实例剖面,它就像一张医用CT片一样,清晰地表现出剖面地下深部的渗滤液渗漏状况。经现场对照核实,剖面图中显示出的7个等间距低阻异常,与其下部掩埋的7只渗滤液汇集管道与总管的交汇点A、B、C、D、E、F、G一一对应。由于7个管道交汇点是由砖头砌成的,渗漏液已通过砖缝向外向下渗透,污染了周围的土壤。有的已向深部渗透,其中异常B、F两点向深部浸透较重。
图11.2.2 某垃圾填埋场高密度电阻率法检测剖面图
E. 水中Cd的检测设备有哪些
1:需要样品前处理设备,这个不是必须的,要依据样品实际情况而定,常用的有电加热板、微波消解罐等。
2:样品分析需要的是原子吸收分光光度计,分为火焰和石墨炉两种原子化装置,当然,如果条件允许的话建议两种装置都配置,并且配备自动进样器,以便提高分析效率。
F. 地下水水质检测常规项目有哪些,哪个机构可以做
一、地下水水质检测范围
用水质:生活用水(自来水),(瓶、桶装)矿泉水,天然矿泉水等;
工业用水:工业循环冷却水、工业锅炉水
其他:农用灌溉水、工业用水、工业废水、医疗废水、实验室水质、药典水(纯化水)质、海水水质、空调水等
二、检测指标
1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。
2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。
3、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。
4、肉眼可见物:主要指水中存在的、能以肉眼观察到的颗粒或其他悬浮物质。
5、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。
6、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。
7、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用水的标准为1ml水中的细菌总数不超过100个。
8、总大肠菌群:是一个粪便污染的指标菌,从中检出的情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其他病原体原菌也基本被杀灭。标准是在检测中不超过3个/L。
9、耐热大肠菌群:它比大肠菌群更贴切地反应食品受人和动物粪便污染的程度,也是水体粪便污染的指示菌。
三、检测项目
饮用水检测项目:
(1)感官性质化学指标:色度、浑浊度、臭和味、肉眼可见物、PH、铝、铁、锰、铜、锌、氯化物、硫酸盐、溶解性总固体、总硬度、耗氧量、挥发酚类、阴离子合成洗涤剂
毒理指标:砷、镉、铬、汞、硒氰化物、氟化物、硝酸盐、三氯甲烷、四氯化碳、溴酸盐、甲醛、亚氯酸盐、氯酸盐
(2)微生物指标:总大肠菌群、耐热大肠菌群、大肠埃希氏菌、致病菌、菌落总数
(3)放射性指标:总α放射性、总β放射性
工业用水检测项目:
(1)微生物:菌落总数、大肠菌群、霉菌、酵母菌、沙门氏菌、志贺氏菌、大肠埃希氏菌、副溶血性弧菌、金黄色葡萄球菌、溶血性链球菌、蜡样芽孢杆菌、单核细胞增生李斯特氏菌、军团菌、霍乱弧菌、阪崎肠杆菌、空肠弯杆菌、铜绿假单胞菌、肠球菌等
(2)感官性状:色度、浑浊度、臭和味、肉眼可见物等
(3)物理指标:PH值、电导率、总硬度、溶解性总固体、挥发酚、阴离子合成洗涤剂等
(4)综合指标:耗氧量、生化需氧量、总有机碳等
(5)金属元素:铍、铅、镉、铬、汞、铊、钾、钙、钠、镁、磷、铁、砷、硒、锌、锡、锰、钴、镍、碘、钒等
(6)无机非金属:硫酸盐、氯化物、氯酸盐、亚氯酸盐、氟化物、硝酸盐氮、硫化物、磷酸盐、硼、氨氮、亚硝酸盐、碘化物、溴酸盐等
(7)有机物:苯、二甲苯、苯并芘、双酚A、甲醛、四氯化碳、一氯二溴甲烷、二氯一溴甲烷、三氯乙烯、四氯乙烯、三溴甲烷、邻苯二甲酸二(2-乙基已基)酯等
其他水样检测项目:
(1)工业锅炉水:悬浮物、溶解氧、总硬度、溶解固形物、硫酸根、磷酸根、相对碱度、含铁量、氯离子含量、含油量、PH值等
(2)工业废水:电导率、透明度、PH值、全盐量、总硬度、色度、浊度、悬浮物、酸度、碱度、六价铬、总汞、铜、锌、铅、镉、镍、铁、锰、铍、总铬、钾、钠、钙、镁、总砷、硒、钡、钼、钴、溶解氧、氨氮、亚硝酸盐氮、硝酸盐氮、硫酸盐、总氮、总磷、氟化物、硫化物、高锰酸盐指数、生化需氧量、化学需氧量、挥发性酚、石油类、动植物油、阴离子表面活性剂、苯、甲苯、乙苯、对二甲苯、邻二甲苯、间二甲苯、苯乙烯等
(3)农田灌溉水:生化需氧量(BOD5)、化学需氧量(CODcr)、悬浮物、阴离子表面活性剂(LAS)、凯氏氮总磷(以P计)、水温、PH值、全盐量、氯化物、硫化物、总汞、总砷、铬(六价)、总铅、总铜、总锌、总硒、氟化物、石油类、挥发酚、苯、三氯乙醛、丙烯醛、硼、粪大肠菌群数、蛔虫卵等
(4)医疗废水:粪大肠菌群、总余氯、氨氮、PH值、悬浮物、总氰化物、氯气、臭气浓度等
具体详情可以咨询冉盛网检测平台
G. 地下水硬度的检测方法
测试步骤:在一份水样中加入 pH=10.0 的氨性缓冲溶液和少许铬黑T指示剂,溶液呈红色;用EDTA 标准溶液滴定时, EDTA 先与游离的Ca2+ 配位,再与Mg2+ 配位;在计量点时, EDTA 从MgIn-中夺取Mg2+ ,从而使指示剂游离出来,溶液的颜色由红变为纯蓝,即为终点。
当水样中Mg2+ 极少时,由于CaIn- 比 MgIn- 的显色灵敏度要差很多,往往得不到敏锐的终点。为了提高终点变色的敏锐性,可在 EDTA 标准溶液中加入适量的 Mg2+(在EDTA 标定前加入,这样就不影响EDTA与被测离子之间的滴定定量关系),或在缓冲溶液中加入一定量的Mg—EDTA 盐。 水的总硬度可由EDTA 标准溶液的浓度cEDTA 和消耗体积 V1(ml)来计算。以CaO 计,单位为 mg/L。
水的总硬度现在已经有些厂家采用离子选择性电极法直接测量,测量方法简单,测值准确。
H. 有什么方法比较简单准确检测地下水质的等级
水质检测是水家装之前的必备工作之一,它很大程度上决定了您需要什么水家装设备.一般水质检测都是由专业的水质检测人员来完成的,在您没有请专业公司来安装前,您也可以自己来检测下自家的水质情况,不是很难的. 同时也可以确定下大概需要什么类型功能的水处理设备,做好水家装预算.
1.看:用透明度较高的玻璃被接满一杯水,对着光线看有无悬浮在水中的细微物质?静置三小时,然后观察杯底是否有沉淀物?如果有,说明水中悬浮杂质严重超标;必须使用净水器进行终端处理
2.闻:用玻璃杯距离水龙头尽量远一点接一杯水,然后用鼻子闻一闻,是否有漂白粉(氯气)的味道?如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标!也必须使用净水器进行终端处理;
3.尝:热喝白开水,有无有漂白粉(氯气)的味道,如果能闻到漂白粉(氯气)的味道,说明自来水中余氯超标!也必须使用净水器进行终端处理;
4.观:用自来水泡茶,隔夜后观察茶水是否变黑?如果茶水变黑,说明自来水中含铁、锰严重超标,应选用装有除铁、锰滤芯的净水器进行终端处理
5.品:品尝白开水,口感有无涩涩的感觉?如有,说明水的硬度过高,应选用装有离子交换树脂的软化滤芯的净水器进行处理,处理后的水口感会更甘甜
6.查:检查家里的热水器、开水壶,内壁有无结一层黄垢?如果有,也说明水的硬度过高,(钙、镁盐含量过高),也应尽早使用软化净水器进行软化处理!注意:硬度过高的水很容易造成热水器管道结垢,因热交换不良而爆管;长期饮用硬度过高的水容易使人得各种结石病.
一般的水质问题都可以通过上面的步骤检测出来,当然,当您确定您家的水质情况确实需要安装水处理设备才能保证健康用水的话,您就必须要请专业的水质检测技术人员来进行检定了.
许多水质问题可以由专业的水质检测技术人员做简单的家庭拜访即可发现,这些水质检测技术人员经过严格的训练,只要随身行的仪器、试剂或试纸协助,便可检验出水质之各项污染程度而提议解决方案最普遍的居家水质测试项目有:硬度(测试单位为GPG),含铁量(测试单位为PPM),酸度(测试单位为PH值),含氯量、硝酸盐含量及总溶解物质(测试单位为PPM).
I. 地下水均衡要素的测定方法
地下水均衡研究的主要工作是测定各均衡要素,这里以潜水均衡要素的测定为例,说明测定地下水均衡要素的常用方法。
(一)潜水储存量变化量(μΔh)的测定方法
潜水储存量变化量(μΔh)是潜水位变化值Δh与水位变动带岩层的给水度(或饱和差)μ的乘积。潜水位变化值Δh一般由观测孔直接观测确定。因此,确定潜水储存量变化量的关键就是测定给水度(或饱和差)μ值。确定给水度μ的常用方法简述如下。
1.实验室测定
对于松散岩层,一般可取原状土样,在实验室用给水度仪测定给水度μ值,即先让试样筒饱水,而后再释水(退水),则试样的给水度μ=试样释水体积(V水)/试样体积(V土)。本方法的优点是成本低,测试简便,缺点是试样体积小,代表性差。
2.根据抽水前后包气带土层天然湿度的变化确定给水度μ值
对包气带分段(段长为ΔZi),分段测定其天然湿度,据包气带中非饱和水流的运移和分布规律可知,抽水前包气带内土层的天然湿度分布应如图6-2中的oacd线所示,然后抽水,使潜水面下降(下降值为Δh),再次测定整个深度内土层的天然湿度值。由图6-2可知,抽水后,潜水面由A下降到B(下降值为Δh),故毛细水带将下移,由aa′段下移至bb′段,此时的土层天然湿度分布线则变为图6-2中的oabd。对比抽水前后的两条湿度分布线可知,由于抽水水位下降,水位变动带将会给出一定量的水,按水均衡原理,抽水前后所测包气带内湿度之差,应等于潜水位下降Δh 时包气带(主要是毛细水带)所给出之水量,此值即μΔh,除以Δh即为给水度μ,即按下式计算给水度μ:
为越流系数(1/d);Δt为计算时段(d)。
(六)潜水溢出或泄流量(WS)的测定
潜水溢出或泄流量是均衡地段内流出地表的潜水量。流出形式一般为泉、泉群、地下河等。一般用堰测法直接测定,并求出均衡期内的平均流量,最后换算成水层厚度(mm)。
J. 测试污染土壤中的Cd含量过程中,种植物前需要对土壤测什么指标
应该测一下PH, 污灌农田土壤镉污染状况及分布特征研究 王芸1 , 张建辉2 , 赵晓军2 (1. 北京科技大学土木与环境工程学院, 北京100083;2. 中国环境监测总站, 北京100029) 摘要: 对沈阳郊区某河沿岸部分乡镇的污灌农田土壤中重金属全镉含量进行了分析,评价了土壤镉污染状况,并探讨了该河沿岸土壤中镉的沿程分布特征、横向分布特征和垂向分布特征。结果表明,农田土壤重金属镉含量范围为0115~8123mgPkg, 均值为1175mgPkg。用土壤环境质量标准二级标准值对土壤中的全镉含量进行评价,平均镉污染指数为5195,为重度污染;用土壤背景值标准评价,平均镉污染指数为5195, 超过当地背景值水平8139 倍,污灌已造成该地区重金属镉污染,且污染程度十分严重。该河渠从上游到下游,沿岸土壤镉含量呈降低趋势;横向分布上,距离该河渠越远,镉含量有逐渐减少的趋势;垂收稿日期:2006212229 作者简介:王芸(1982- ) ,女,湖北荆州人,硕士研究生. 引用污水灌溉农田在我国尤其是北方缺水地区曾经被广泛采用,工业及城市生活污水中有较高含量的N 和P 等营养物质[1] ,会对农作物生长起到一定的促进作用[2] 。污灌缓解了农业生产用水资源不足,解决了城市污水排放问题,同时也造成了土壤中镉等重金属的积累,进而导致农作物重金属含量超标,并且危害灌区居民人体健康[3] ,成为影响农村生态环境安全和制约农业可持续发展的重要因素之一。位于沈阳市郊区的某河,自1957 年开始接纳城市工业废水和生活污水,水质受到严重污染,已经失去天然水体的功能,成为一条城市排污河渠。而沿岸地区引用该河河水灌溉农田长达40 多年,使部分农田土壤呈现典型的累积性重金属污染,尤其以重金属镉污染最为严重。 本研究对沈阳郊区某河渠沿岸部分乡镇农田土壤的镉污染状况进行了评价,并且分析了表层(0~20cm) 土壤沿程分布、横向分布及土壤的垂向分布特征,为该区域镉污染土壤的治理和灌区土地资源的合理利用提供科学、准确的依据。 1 研究方法 111 样点布设 研究区域位于沈阳市西郊,属浑河冲击平原,表层亚粘土厚度为012~6125m, 表层土以下为砂和砂砾石,层厚达100m 以上,渗透性较强。上世纪五十年代,为解决农业生产缺水问题,该河与卫工、肇工明渠接通,接纳沈阳市西部污水,用来灌 第23 卷第5 期2007 年10 月 中国环境监测 . http://www.cnki.net 溉该河沿岸的农田,近年来监测发现,土壤受到严重污染,尤其镉污染超标严重。 11111 镉污染状况研究 选择沿岸具有代表性的四个乡镇(A、B、C、D,采用网格法布点,即每个面积为1km2 的网格内布设1 个采样点,共布设18 个点位,采集表层0~20cm 土样分析镉污染状况。 11112 镉污染分布特征研究 对沿岸上游、中游、下游土壤进行了采样并分析镉含量;沿途选取6 个采样点,分别采集0~20、 20~40、40~60、60~80、80~100cm 五个剖面层的土壤样品;选取河渠的两条断面线路,对距河渠不同距离(015、110、115、210、215、3km) 的土壤进行了表层采样。每个点位按梅花形取样法,取5 点土样均匀混合,反复四分法弃取后,自然风干,过 100 目尼龙筛,装瓶备用,测定土壤样品中全镉含量。 112 测试分析方法 全镉的分析方法采用KI-MIBK 火焰原子吸 收分光光度法(GBPT17140-1997 ) 测定。 113 评价标准 以沈阳市土壤中镉元素的背景值[4] 和土壤 境质量标准( GB15618-1995 ) 中的二级标准(保障农业生产,维护人体健康的土壤限制值) 作为评价标准[5] (表1) 。土壤中镉的含量采用单因子评价 模式: Pi = Ci PSi ,式中Pi 为污染物i 的单项污染指数; Ci 为污染物i 的实测浓度; Si 为污染物i 的评价标准。按照土壤环境质量标准,污染等级的划分按照表2 划分成4 级[6] 。 表1 土壤环境背景值及土壤 环境质量标准二级标准值 元素 土壤环境质量标准(mgPkg) pH<6 15 pH6 15~715 pH>7 15 背景值(mgPkg) Cd ≤0130 ≤0130 ≤0160 0119 表2 土壤中镉污染的污染程度分级 级别1 2 3 4 污染指数P ≤1 1 <P ≤2 2 <P ≤3 P>3 污染程度未污染轻度污染中度污染重度污染 2 结果和分析 211 沿岸乡镇农田土壤中镉污染的状况 四个乡镇农田土壤表层中重金属全镉含量及其评价结果见表3。其中,P1 是以土壤环境质量标准评价的镉污染指数,P2 是以当地土壤背景值评价的镉污染指数。 表3 土壤全镉含量及其评价结果 乡镇名称采样点pH 全镉(mgPkg) 按照二级质量标准按照当地背景值标准P1 污染等级P2 超过背景值倍数 A 1 # 6153 116 5133 重污染8142 7142 2 # 315 319 13 重污染20153 19153 3 # 612 3106 1012 重污染16111 15111 4 # 6151 1143 4177 重污染7153 6153 5 # 6 211 7 重污染11105 10105 6 # 6102 8123 27143 重污染43132 42132 7 # 614 1196 6153 重污染10132 9132 8 # 6109 1128 4127 重污染6174 5174 B 9 # 5165 112 4 重污染6132 5132 10 # 6116 0176 2153 中污染4 3 11 # 5175 1119 3197 重污染6126 5126 12 # 6111 0144 1147 轻污染2132 1132 C 13 # 6118 119 6133 重污染10 9 14 # 6186 0125 0183 未污染1132 0132 15 # 5135 0115 015 未污染0179 - D 16 # 5189 1159 513 重污染8137 7137 17 # 5142 0121 017 未污染1111 0111 18 # 5193 0186 2187 中污染4153 3153 平均值5192 1178 5195 重污染9139 8139 7 2 中国环境监 测第23 卷第5 期 2007 年10 月 �0�8 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 以土壤环境质量二级标准( GB15618-1995 ) 进行评价,四个乡镇农田土壤的18 个监测点位的平均镉污染指数为5195, 属于重度污染。其中6#点位镉污染最重,污染指数为27143,15 # 点位最轻为015。根据表2 中污染等级的划分,受到重度污染的点位占6617%, 中度污染占1111%, 轻度污染的占516%, 未受污染的占1617% 。可见大部分土壤都受到重度的镉污染,应予充分重视。土壤背景值是以未受污染的土壤为依据实际测定的,是反映区域土壤质量比较真实的数据,也是当前人类保护土壤环境质量的目标。我国土壤镉的背景值为01097mgPkg[4] ,而沈阳市土壤镉的背景值为0119mgPkg[4] ,极显着高于全国水平,属于Cd 高背景区。采用沈阳市土壤重金属镉的背景值对沿岸乡镇农田土壤镉污染状况进行评价,除了15# 点位外,其余的点位镉含量均超过了当地的土壤镉元素背景值水平,且大部分都远远超过当地背景值,最高超标倍数达42132。土壤由于地区背景差异较大,因此用当地背景值标准评价更反映出土壤的人为污染程度。以上可以看出,沿岸乡镇农田土壤已经受到了不同程度的镉污染,大部分地区镉污染十分严重,须采取环境修复技术或其它措施进行污染治理, 否则会给当地居民的生活和生产造成危害。 212 土壤中镉污染的分布特征 21211 表层(0~20cm) 土壤镉污染的沿程分布 如表4 所示,该河上游土壤重金属镉平均含量达到1198mgPkg, 几乎是中游和下游的3 倍,超标率(按照土壤环境质量标准评价) 也为中游和下游地区的212 倍和3 倍,处于重污染水平。中游和下游地区土壤重金属镉平均含量均处于中污染水平,但超标率中游地区比下游地区高出十个百分点。土壤镉污染呈沿程降低趋势,即上游污染最重, 向下游逐渐减轻, 但下游地区也超标2814%, 镉污染不可忽视。在灌溉的过程中,水体中镉主要以悬浮物形式输送,在上游流程较短,重金属净化效果不大;到达下游时,经过沿途的净水沉积,会降低水体中重金属的含量[5] ,使得上游地区镉含量高于中游和下游。 表4 某河沿程土壤中镉污染及评价结果 点位含量范围(mgPPkg) 含量均值(mgPkg) P1 平均超标倍数超标率( %) 污染等级 上游0115~40110 1198 616 516 8617 重度污染 中游0115~16134 0163 211 111 3816 中度污染 下游0115~13193 0161 2 1 2814 中度污染 21212 表层(0~20cm) 土壤镉污染的横向分布如图1 所示, 两条断面线路中, 距离河渠015km以内的土壤镉含量都相当高, 分别达到13120 和8171mgPkg,0 15km 以外范围的土壤镉含量均小于4mgPkg, 远远低于015km 以内的含量,且015km以外范围的镉含量都相差不大, 这表明015km 以内的土壤为主要受污染的区域。对土壤中的镉含量与距某河的不同距离作回归分析,计算二者之间的相关性。1 号线和2 号线的相关方程和相关系数分别为 y1 = 919633 -3 14400x , r1 = - 017031 y2 = 617133 -2 12543 x , r2 = - 01716 (r0101 = 01917 , r0105 = 01811) 结果表明,土壤中的镉含量与距河岸的距离负相关,但相关性未达到显着,二者并不呈线性相关。由此得出,距某河距离越远,土壤中的镉含量有逐渐减少的趋势。 21213 土壤镉污染的垂向分布 不同剖面层土壤全镉含量如图2 所示。总体图1 距某河不同距离的表层土壤全镉含量来看, 0~100cm 深度的5 个层面中, 土壤中镉含量由上至下呈下降趋势,且梯度变化较大;其中最高含量均分布在0~20cm 的土壤表层,且表层土壤的含镉量大部分都远高于20~40cm 土层。这与多数研究者认为重金属在土壤中主要累积在0~20cm 耕层,纵向向下迁移较慢的研究结果[7,8] 是相符的。6 个采样点中,40~60cm 的下层土壤镉含量均高于该地区镉的土壤背景值(0119mgP 王 芸等: 污灌农田土壤镉污染状况及分布特征研究7 3 �0�8 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net kg) ,这说明在长期的污灌条件下,受污灌水不断下渗的影响,不仅造成了该灌区表层土壤的污染,而且污染已经向纵向发展,应引起重视。 图2 某河沿岸不同剖面层土壤全镉含量 3 结论 (1) 对沈阳郊区某河沿岸部分乡镇农田表层土壤中重金属全镉含量的分析结果表明,该污灌区土壤重金属镉含量范围为0115~8123mgPkg, 均值为1178mgPkg。用土壤环境质量标准二级标准值对土壤中的全镉含量进行了评价,平均镉污染指数分别为5195, 为重度污染; 用当地土壤背景值评价,平均镉污染指数为9139, 超出当地背景值水平8139 倍,污灌已造成表层土壤重金属镉累积性污染,且污染程度较重。 (2) 土壤污染分布特征:从上游到下游,土壤镉含量呈沿程降低趋势;横向分布上,距河的距离越远,土壤中的镉含量有逐渐减少的趋势;垂向分布上,镉污染主要集中在表层,并且已向下迁移,但是迁移速度较慢。 4 讨论 该河渠每年冬春两季接纳城市排放污水长达半年,城市污水进入河渠后,一些主要污染物滞留沉积,水质受到严重污染,使之失去天然水体的功能,成为一条城市排污河渠。灌溉期开始,引入外水,河槽在激流的冲击下,沉渣泛起,这时沿岸几十处泵站,抽水灌田,污水流入田间遣散,随着悬浮物下降及土壤表层有机、无机胶体的吸附作用,大量重金属沉积在0~20cm 表层中。重金属镉保持率为85% ~95%, 在土壤中有很大的累积性。沿岸农田土壤经多年污水灌溉,在灌渠渠底及表层土壤中会累积相当量的镉,一旦受酸水浸洗,很易释放镉离子。土壤中重金属镉主要以酸溶性和交换态存在,具有较大活性,易被农作物吸收。土壤中80% 的镉与占无机配位体中主导地位的Cl- 结合,形成可溶性的CdCl2 及CdCl- 离子,极易为水稻等作物吸收,导致稻米中镉含量严重超标。 在土壤镉污染的垂向分布的研究中还发现,2 # 、3 # 、4 # 和5 # 点位剖面层,出现下层土壤镉含量高于上层土壤的情况。这表明在某些剖面中可能存在地下水镉污染导致土壤下层含镉量增高的可能性,但是这一现象仍有待进一步证实。 根据本次研究结果可以看出,虽然目前已经停止污水污灌,但是沿岸土壤中重金属镉污染程度仍然很严重。土壤镉污染在短期内对其进行修复十分困难,该地区的农作物以及地下水都会受到污染,严重威胁该地区人群的健康,因此污水灌溉的危害仍然存在。 参考文献: [1 ] 陈竹君,周建斌. 污水灌溉在以色列农业中的应用[J]. 农业环境保护,2001 ,20(6) :462~464. [2 ] 刘丽. 小凌河污水灌溉对水稻作物影响的分析[J]. 辽宁城乡环境科技,1999 ,19(1) :43~46. [3 ] 黄正,王家玲. 城市污灌废水的致突变性检测及色谱P质谱分析[J]. 华中科技大学学报(医学版) ,1992 ,(21) :25~261 [4 ] 吴燕玉. 辽宁省土壤元素背景值研究[M]. 北京:中国环境科学出版社,1994. [5 ] 吴燕玉,陈涛,张学询. 沈阳张士灌区镉的污染生态的研究[J]. 生态学报,1989 ,9 (1) :21~26. [6 ] 陈华勇,欧阳建平,马振东. 大冶有色冶炼厂附近农田镉污染的现状与治理对策[J]. 土壤,2003 , (1) :76 ~82. 7 4 中国环境监 测第23 卷第5 期 2007 年10 月 向分布上,表层土壤镉含量最高。