‘壹’ 做轴对称图形的方法
怎样准确画一个轴对称图形的另一半?其实,只要分三步走就能准确画出轴对称图形的另一半:一找,二描点,三连线。找:找出已知图形关键点;描点:分别数出各关键点到对称轴的距离,并根据轴对称图形的性质描出各关键点的对应点;连线:按照已知图形的形状,依次地把各对应点连结起来。下面,给大家举例讲解:
例1:根据对称轴,分别画出下面两个轴对称图形的另一半。
【分析与解】我们可以分以下3个步骤画出轴对称图形的另一半。
步骤1:找关键点。一般是以已知图形中的起点、终点和“转折点”(即两线段的交点)为关键点。如图1所示,可确定A、B、C、D、E、F为关键点。
步骤2:描出对应点:先数(或量)出各关键点到对称轴的距离,然后根据轴对称的性质描出它们的对应点。如图2所示,对称轴上的A和F点会与自己的对应点重合,而关键点B、C、D、E的对应点分别为B′、C′、D′、E′。
步骤3:连结对应点。如图3所示,按照已知图形的形状,依次序用线段连接各对应点,画出完整对称图形。
你掌握上面的方法没有?请你尝试用上面的方法画出下面的轴对称图形的另一半。
‘贰’ 初中数学用一般式怎么求对称轴
可以用公式法,可以用配方法。
一般y=ax²+bx+c(a≠0)
公式法:对称轴x=-b/2a
y=a(x+b/2a)²+(4ac-b²)/4a
求出对称轴。
‘叁’ 初中数学函数中的对称点问题应该怎么做
对于平面直角坐标下的电(x,y)关于点(a,b)的对称点
平面内一点(x,y)关于(a,b)对称的点的坐标为(2a-x,2b-y)
解
设点(x,y)关于(a,b)对称的点为(m,n)
∴点(m,n)为点(x,y)和点(a,b)的中点
∴a=(x+m)/2
b= (y=n )/2
∴m=2a-x
n=2b-y
∴平面内一点(x,y)关于(a,b)对称的点的坐标为(2a-x,2b-y)
‘肆’ 做初中数学题的技巧方法
大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,那么接下来给大家分享一些关于做初中数学题的技巧 方法 ,希望对大家有所帮助。
做初中数学题要分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:
1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
做初中数学题四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题。
其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
做初中数学题答题技巧
1、定位准确防止 “捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;
尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
做初中数学题压轴题技巧
纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化。
求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等;
探索两个三角形满足什么条件相似等;
探究线段之间的位置关系等;
探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
做初中数学题的技巧方法相关 文章 :
★ 初中数学解题技巧与方法
★ 初中数学题中的小技巧整理
★ 初中数学学习方法以及技巧
★ 做数学选择题的十种技巧
★ 初中数学学习方法总结,数学的六大方法技巧!
★ 初中数学解题方法大汇总
★ 初中数学题中的小技巧
★ 初中数学里常用的十种经典解题方法
★ 做题技巧数学初中解题方法总结
‘伍’ 中考数学几何折叠问题的答题技巧
中考数学几何折叠问题的答题技巧
折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.
折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.
根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的`连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.
1、利用点的对称
例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.
(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=
,求DE的长;
(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.
图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=
DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ONBC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=
AE,根据勾股定理可求出DE=
,OE=
. 通过Rt△FEO∽Rt△AED,求得FO=
,从而求出EF的长.
对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.
二、利用线段的对称性质
例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角
对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的ABM、MBN和NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NGBC,则直角三角形中NG=
BN,从而可得ABM=MBN=NBC=300.)
若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以ABM=MBN=NBC=300.
利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.
三、利用面对称的性质
例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?
这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到AFE=A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.
在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.
解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.
;