⑴ 请你谈谈你在学习中遇到的问题及解决方法
1、自信心受挫
对于年轻人来说,一定要注意树立良好的自信心,当然,有时候由于个人的能力不足,或者是经验欠缺,都可能让我们的自信心受到打击,正确的解决办法就是提高能力,从根本上解决问题。
2、沟通协调不畅
还有一些情况下,我们在与人沟通方面存在问题,很多人性格都很内向,不善言辞,对于这样的情况,我们应该通过真诚的态度,跟别人友好的沟通,尽量使沟通协调顺畅。
3、人际关系不好
人际关系是一门学问,有些人为人处世还可以,但是就是人际关系不好,主要原因就是他不会处理人际关系,想要人际关系好,就应该尽量多帮助别人,用心关注别人,不张扬。
4、正确面对感情
感情问题是我们需要面对的一个很现实的问题,很多人不会处理感情问题,有的人将工作学习完全置于感情之上,还有的事业心不强,只注重家庭,这些都有弊端,应该权衡利弊,找到最佳的平衡点。
5、建立良好家庭氛围
家庭氛围是非常重要的,如果没有良好的家庭环境,我们在学习和工作方面,都会遇到很多挫折,所以,尽量用心经营家庭,让彼此的关系非常良好,这样才有助于学习和生活。
一般是需求人员和设计人员思路不一致导致的。你的理解和真实的需求存在偏差,设计过程中最好分阶段反馈设计结果,不断修正。如果是设计时思路堵塞遇到困难,可以采取头脑风暴的形式,集中处理,共同解决,千万不要因为一个人的问题影响整个项目
⑶ 平差是怎么计算的
由于测量仪器的精度不完善和人为因素及外界条件的影响,测量误差总是不可避 测量平差
免的。为了提高成果的质量,处理好这些测量中存在的误差问题,观测值的个数往往要多于确定未知量所必须观测的个数,也就是要进行多余观测。有了多余观测,势必在观测结果之间产生矛盾,测量平差的目的就在于消除这些矛盾而求得观测量的最可靠结果并评定测量成果的精度。测量平差采用的原理就是“最小二乘法”。 测量平差是德国数学家高斯于1821~1823年在汉诺威弧度测量的三角网平差中首次应用,以后经过许多科学家的不断完善,得到发展,测量平差已成为测绘学中很重要的、内容丰富的基础理论与数据处理技术之一。
编辑本段测量原理
测量平差
测量平差是用最小二乘法原理处理各种观测结果的理论和计算方法。测量平差的目的在于消除各观测值间的矛盾,以求得最可靠的结果和评定测量结果的精度。任何测量,只要有多余观测,就有平差的问题。
编辑本段平差目的
为了提高成果的质量,处理好测量中存在的误差问题,要进行多余观测,有了多余观测,势必在观测结果之间产生矛盾,测量平差目的就在于消除这些矛盾而求得观测量的最可靠的结果,并评定测量成果的精度。
编辑本段测量步骤
(1)观测数据检核,起始数据正确性的处理 (2)列出误差方程式或条件方程式,按最小二乘法原理进行平差 (3)平差结果的质量评定。按观测量相互间的关系,可分为相关的或不相关的平差。平差的方法有直接平差、间接平差、条件平差、附有条件的间接平差和附有未知数的条件平差等。
编辑本段相关研究
测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差 误差理论与测量平差
、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。
编辑本段平差应用
测量平差理论在计量中的应用 测量平差是德国数学家高斯于1821~1823年在汉诺威弧度测量的三角网平差中首次应用,以后经过许多科学家的不断完善,得到发展,测量平差已成为测绘学中很重要的、内容丰富的基础理论与数据处理技术之一。计量科学与测绘科学都是以物理学、数学及近代计算机科学为基础的学科,本质上两者是相容、一致的。在计量学中,对测量不确定度给出的综合的不确定性评价,此评价不但考虑了观测时各种误差因素的联合影响,包括观测时随机效应的影响,一些系统效应的影响, 也考虑了测量时其他因素的影响,文章主要针对这一问题进行探讨,旨在通过对“测量平差理论在计量中的应用”的本质内涵的深入探讨,期望这一问题得到缓解或解决,最终的目的是便于测绘仪器校准工作的开展。
测量界限
由于测量仪器的精度不完善和人为因素及外界条件的影响,测量误差总是不可避免的。为了提高成果的质量,处理好这些测量中存在的误差问题,观测值的个数往往要多于确定未知量所必须观测的个数,也就是要进行多余观测。有了多余观测,势必在观测结果之间产生矛盾,测量平差的目的就在于消除这些矛盾而求得观测量的最可靠结果并评定测量成果的精度。测量平差采用的原理就是“最小二乘法”。 考虑函数是待定常数,如果在一直线上,可以认为变量之间的关系,但一般说来,这些点不可能在同一直线上。记,它反映了用直线来描述时,计算值与实际值产生的偏差。当然要求偏差越小越好,但由于可正可负,因此不能认为总偏差时,函数就很好地反映了变量之间的关系,因为此时每个偏差的绝对值可能很大。为了改进这一缺陷,就考虑用来代替,但是由于绝对值不易作解析运算,因此,进一步用来度量总偏差。因偏差的平方和最小可以保证每个偏差都不会很大。于是问题归结为确定中的常数和使为最小,用这种确定系数的方法称为最小二乘法。
测量精准
其精确定义可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。最小二乘法如何寻之间近似成线性关系时的经验公式,假定实验测得变量之间个数 , ,…, ,则平面上,可以得个 ,这种图形称为“散点图”,从图中可以粗略看出这些点大致散落在某直线近旁,我们认之间近似为一线性函数,下面介绍求解步骤,考虑函 ,其是待定常数.如在一直线上,可以认为变量之间的关系 。但一般说来,这些点不可能在同一直线上. ,它反映了用直来描 ,时,计算与实际产生的偏差。当然要求偏差越小越好,但由可正可负,因此不能认为总偏时,函就很好地反映了变量之间的关系,因为此时每个偏差的绝对值可能很大。为了改进这一缺陷,就考虑来代替。但是由于绝对值不易作解析运算,因此,进一步来度量总偏差。因偏差的平方和最小可以保证每个偏差都不会很大,于是问题归结为确中的常 ,为最小,用这种方法确定系 ,的方法称为最小二乘法。最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配,是用最简的方法求得一些绝对不可知的真值。
测量标准
测绘中广泛使用的测量平差法,是基于最小二乘原理的测量数据处理方法,它是利用直接测量采集观测数据(观测向量),再利用此观测数据( 观测向量)结合平差数学模型,对被测量结果进行估计的过程,估计方法采用“ 数理统计学” 中着名的“ 最小二乘法”。平差处理结果包括被测量的测量结果和表征此测量结果不确定性的标准差(中误差)。测量平差法本质上相当于对测量中的随机误差进行了有效的减弱( 采集数据量越大, 减弱效果越好, 直到几乎消除), 对测量中不等权的非确定性系统误差( 即大小水平不一致的非确定性系统误差)进行了合理的分配,但对于测量中等权的非确定性系统误差(即大小水平一致的非确定性系统误差)没有起到消除或减弱作用。所以,平差后所得的测量结果标准差( 中误差),只是表征了随机效应导致的测量不确定性( 度),是测量不确定度的随机分量,为了完全表征测量结果不确定性( 度), 还需要考虑系统效应导致的不确定性( 度) 并加以合成。 测量平差法虽然包括了一定的现场测量条件,但其测量结果(平差结果)只是测得值所处范围的一个参数(随机误差)。在计量学中,测量的目的是为了确定被测量的量值。测量不确定度就是对测量结果质量的定量表征,测量结果表述必须同时包含赋予被测量的值及与该值相关的测量不确定度,才是完整并有意义的。用测量不确定度表征测量结果不确定性,既要考虑测量结果的系统误差效应,又考虑了测量结果的随机误差效应,严格说还考虑了测量结果的模糊效应,所以测量不确定度具有严密的科学性与严谨性,是测量结果不确定性的精确描述。随机误差(平差结果)是由于测量时的随机因素或效应所引起的相对于被测量真值的偏差,这种随机因素或效应,将导致重复测量时测量结果值的分散性。这说明,随机误差具有随机不确定性,这种不确定性的具体特征就是值的分散性,随机误差应属于随机不确定性量,其数学期望(均值)为零。 测量结果=被测量真值+系统误差+随机误差 =被测量真值+确定性系统误差+非确定性系统误差+随机误差 =确定性分量+非确定性分量 以上讨论了测量平差结果在计量学测量结果不确定度评定中,只是不确定度分量之一。因为,测量结果是被测量真值、系统误差、随机误差(中误差)这三个量的合成,故其不确定性应由这三个量的不确定性决定,研究测量结果不确定度应由这三个量的不确定度着手。仅考虑随机不确定性,是不全面不客观的。
⑷ 平差的方法有哪些,在处理数据时怎样选择合适的平差方法
网的可靠性分为内部可靠性和外部可靠性。内部可靠性是控制网发现或探测粗差的能力,用观测值的多余观测数来衡量,而外部可靠性是控制网抵抗粗差对平差结果的能力,用参考因子来衡量。你进行网平差时出现参考因子有问题,说明有粗差对网的平差结果的影响达到了不能容忍的地步,而若你的无约束平差中各项指标正常,那就是你的约束条件(已知点)有问题了。