导航:首页 > 解决方法 > afm测试常见问题及解决方法

afm测试常见问题及解决方法

发布时间:2023-01-15 08:30:19

1. 原子力显微镜afm 样品制备过程需要考虑哪些因素

原子力显微镜样本制备过程需要考虑的因素:环境、样品、探针的选择还有操作的熟练精准度。想了解更相信的信息,可以咨询Park原子力显微镜。Park原子力显微镜中的Park Wafer是晶圆厂唯一具有自动缺陷检测的原子力显微镜。

Park Wafer全自动AFM解决了缺陷成像和分析问题,提高缺陷检测生产率达1000%。工业领先的低噪声Park原子力显微镜(AFM)与长距离滑动台相结合,成为用于化学机械抛光(CMP)计量的原子力轮廓仪(AFP)。新的低噪声AFP为局部和全面均匀性测量提供了非常平坦的轮廓扫描,具有最好的轮廓扫描精度和市场可重复性。它有着超高精度和最小化探针针尖变量的亚埃级表面粗糙度测量

想要了解原子力显微镜的相关信息,推荐咨询Park原子力显微镜。Park成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park原子力显微镜具有综合性的扫描模式,因此您可以准确有效地收集各种数据类型。从使用世界上唯一的真非接触模式用来保持探针的尖锐度和样品的完整性,到先进的磁力显微镜, Park在原子力显微镜领域为您提供最具创新、精确的模式。

2. AFM如何测液体

1.样品制备:制备银纳米颗粒,再固定于液体池中的样品台上2.实验前一定要根据液体池容量适量的添加液体,防止液体泄露,损伤扫描器。3.根据液体池材质和结构,对所能盛放的液体的要求也有所不同,主要是PH值和液体容量。4.如果在液体中做轻敲模式,由于悬臂的起振方式与在空气中稍有差别,另外加上液体的阻尼,所以悬臂的振动性质也会有所改变。在选择共振峰的时候也有所技巧。5.由于使用了液体池,很难观察针尖与样品间的距离,所以下针的时候需要谨慎一点。6.进针,扫描。

3. 谁有原子力显微镜(AFM)探针针尖修饰的资料的,就是介绍探针修饰,谢谢!

原子力显微镜(atomic force microscope, AFM)是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。1981年,STM(scanning tunneling micros, 扫描隧道显微镜)由IBM-Zurich 的Binnig and Rohrer 发明。1982年,Binnig首次观察到原子分辨图Si(7x7)。1985年,Binnig, Gerber和Quate开发成功了首台AFM(atomic force microscope, 原子力显微镜)。在表面科学、纳米技术领域、生物电子等领域, SPM(scanning probe micros)逐渐发展成为重要的、多功能材的材料表征工具。
STM 要求样品表面导电,而AFM可以测试绝缘体的表面形貌和性能。因为STM的基本原理是通过测量探针与样品表面的隧道电流大小来探测表面形貌,而AFM是测量探针与样品表面的相互作用力。AFM由四个部分组成:机械运动部分、悬臂偏转信号光学检测系统、控制信号反馈系统, 成像和信息处理软件系统。探针与样品之间的相互作用力使微悬臂向上或向下偏转,利用激光将光照射在悬臂的末端,反射光的位置改变就用来测器此悬臂的偏移量,这种检测方法最先由Meyer 和Amer提出。机械部分的运动(探针上、下以及横向扫描运动)是有精密的压电陶瓷控制。激光反射探测采用PSD。反馈和成像系统控制探针和样品表面间距以及最后处理实验测试结果。
原子力显微镜AFM操作模式
随着AFM技术的发展,各种新应用不断涌现。具体包括如下技术:
(1) 接触模式 (contact mode) 最早的模式,探针和样品直接接触,探针容易磨损,因此要求探针较软,即悬臂的弹性系数小,一般小于1N/m。
(2) 轻敲模式 (tapping mode) 也叫Dynamic Force或者Intermittant-contact。探针在外力驱动下共振,探针部分振动位置进入力曲线的排斥区,因此探针间隙性的接触样品表面。探针要求很高的悬臂弹性系数来避免与样品表面的微层水膜咬死。Tapping mode对样品作用力小,对软样品特别有利于提高分辨率。同时探针的寿命也较contact mode的稍长。
以上是最常用的AFM模式,别的模式还有很多:如
Lateral Force Micros(横向力显微镜,检测样品表面微区对探针横向的摩擦力,可以获得材料的力学性能),
Noncontact mode Force(非接触模式显微镜,与tapping mode基本相同,区别是非接触模式探针工作在力曲线的吸引区),
Force Molation (力调制显微镜,探针对检测样品表面微区有很大的力,可以获得材料微区的弹性系数等力学性能),
CFM chemical force micros
EFM electric force micros
KFM Kelvin force micros
MFM magnetic force micros
SThM Scanning thermal micros
SCM Scanning capacitance microscope
SCPM Scanning chemical potential microscope
SEcM Scanning electrochemical microscope
SICM Scanning ion conctance microscope
SKPM Scanning Kelvin probe microscope
SThM Scanning thermal microscope
STOS Scanning tunneling optical spectrometer
各种模式和应用要求性能各异的探针,而探针的性能指标是决定显微镜分辨率的最关键的因素。
二. AFM探针分类及各探针优缺点
AFM探针基本都是由MEMS技术加工 Si 或者 Si3N4来制备. 探针针尖半径一般为10到几十 nm。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。典型的硅微悬臂大约100μm长、10μm宽、数微米厚。
利用探针与样品之间各种不同的相互作用的力而开发了各种不同应用领域的显微镜,如AFM(范德法力),静电力显微镜EFM(静电力)磁力显微镜MFM(静磁力)侧向力显微镜LFM(探针侧向偏转力)等, 因此有对应不同种类显微镜的相应探针。
原子力显微镜的探针主要有以下几种:
(1)、 非接触/轻敲模式针尖以及接触模式探针:最常用的产品,分辨率高,使用寿命一般。使用过程中探针不断磨损,分辨率很容易下降。主要应用与表面形貌观察。
(2)、 导电探针:通过对普通探针镀10-50纳米厚的Pt(以及别的提高镀层结合力的金属,如Cr,Ti,Pt和Ir等)得到。导电探针应用于EFM,KFM,SCM等。导电探针分辨率比tapping和contact模式的探针差,使用时导电镀层容易脱落,导电性难以长期保持。导电针尖的新产品有碳纳米管针尖,金刚石镀层针尖,全金刚石针尖,全金属丝针尖,这些新技术克服了普通导电针尖的短寿命和分辨率不高的缺点。
(3)、磁性探针:应用于MFM,通过在普通tapping和contact模式的探针上镀Co、Fe等铁磁性层制备,分辨率比普通探针差,使用时导电镀层容易脱落。
(4)、大长径比探针:大长径比针尖是专为测量深的沟槽以及近似铅垂的侧面而设计生产的。特点:不太常用的产品,分辨率很高,使用寿命一般。技术参数:针尖高度> 9μm;长径比5:1;针尖半径< 10 nm。
(5)、类金刚石碳AFM探针/全金刚石探针:一种是在硅探针的针尖部分上加一层类金刚石碳膜,另外一种是全金刚石材料制备(价格很高)。这两种金刚石碳探针具有很大的耐久性,减少了针尖的磨损从而增加了使用寿命。
还有生物探针(分子功能化),力调制探针,压痕仪探针

4. 折腾了很久AFM-拉曼成像,出来的图都不好看,有没有高手来指点一下多谢啦。

你用的哪个品牌?首先AFM/Raman系统工作时必须保证无振动影响,比如拉曼系统的激光或CCD冷却风扇会有一定影响。其次,也是多数用户得不到好的图像的原因,是AFM扫描的同时进行拉曼mapping测试,因为AFM扫描到指定位置时要等待拉曼测试完成,而压电陶瓷平移台在等待拉曼测试时并没有完全停止运动,因此拉曼测试完成后恢复AFM扫描时,获得的AFM图像已经失真。一般解决办法是先进行一次“预扫描”,得到拉曼mapping图,和一个不完美的AFM图像,然后再对同一区域单独进行AFM扫描,不再同时进行拉曼测试。因为从技术上可以保证扫描的同一区域,所以可以认为AFM和Raman Mapping是同时获得的。

5. 求助高人:AFM(原子力显微镜)为何扫不到图像

1.所选频率不在范围之内
2.探针线是否损坏

6. 求助amorphous材料的AFM测试

原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。
原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)来详细说明其工作原理。
二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。
在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。

7. 怎样用afm测生物膜的表面结构

AFM的基本原理是基于探针与样品之间的原子相互作用力,探针置于悬臂梁上,
利用光学杠杆法测出悬臂梁在原子力作用下的变形,便可测出被测表面的形貌。AFM有
两种型式,一种是接触式测量,但其接触力极小,典型地为10^-7到10^-10N,主要由两部分组
成,一部分是由各种原因(如样品表面的张力、样品表面上的电荷等)引起的样品和探针之
间的吸引力,另一部分是在吸引力作用下探针沿样品表面扫描时出现的摩擦力。接触式
AFM的接触力尽管很小,但在有些应用中仍是不允许的,因此又出现了一种非接触式
AFM。非接触式AFM的工作原理是基于这样一种现象,即当样品表面与探针处于似接触
没接触状态时,探针的振动幅度变小并同样品表面与探针之间的平均距离成正比。AFM
具有极高的纵向分辨率,可达0.01nm,但横向测量长度很小,仅达到10μm,因此AFM常被用
来测量线条的宽度,较少用于测量表面形貌。

接触式﹕利用探针和待测物表面之原子力交互作用(一定要接触),此
作用力(原子间的排斥力)很小,但由于接触面积很小,因此过大的作用力
仍会损坏样品,尤其对软性材质,不过较大的作用力可得较佳分辨率,所afm
以选择较适当的作用力便十分的重要。由于排斥力对距离非常敏感,所以较易得到原子分辨率。

非接触式﹕为了解决接触式之AFM 可能破坏样品的缺点,便有非接触式之AFM 被发展出来,这是利用原子间的长距离吸引力来运作,由于探针和样品没有接触,因此样品没有被破坏的问题,不过此力对距离的变化非常小,所以必须使用调变技术来增加讯号对噪声比。在空气中由于样品表面水模的影响,其分辨率一般只有50nm,而在超高真空中可得原子分辨率

8. SEM,TEM,AFM检测生物样品都有什么不足

SEM,TEM,AFM检测生物样品都有什么不足
透射电镜(TEM)的放大倍数要比扫描电镜(SEM)的高,当然两则的成像原理也是不同的,如果需要观察纳米颗粒在聚合物中的分散情况,你就必须要用TEM来观察了,SEM通常看材料的缺口断面,当然还有许多其他应用.\x0dSEM是电子束激发出表面次级电子,而TEM是穿透试样,而电子束穿透能力很弱,所以TEM样品要求很薄,只有几十nm, TEM一般放大能达几百w倍,而SEM只有几万倍.\x0d扫描电镜通常用在一些断口观察分析,外加一个能谱仪,可以进行能谱扫描.其放大倍数相对较低,操作方便,样品制作简单,对于高聚物,须进行喷金处理 TEM则可以观看样品的内部结构,粒子的分散等.其放大倍数高于SEM,但也不是绝对,现在有些扫描电镜的放大倍数也可以很高.其操作较复杂,样品制作也较为烦琐

9. 硅片有正反面吗测AFM

没有。afm测硅片底部就行。
1、超声半小时以上,静置10分钟。
2、将液体滴加旋涂硅片基底上,适当温度烘干、氮气吹扫后即可测试。

10. AFM(原子力显微镜)的问题

以前做过这个试验,你可以参考一下
1、 设备信号来源:激光信号接收:PSD(Position Sensitive Detector)全称为位置传感检测器,输出的是模拟信号,线性度好、响应快。探针:在镀金的小矩形上,每头有一大一小的等腰三角形,探针三角形顶端,垂直于三角形平面,肉眼只能看到三角形,看不到探针,一个矩形上有四个探针可以使用。压电陶瓷:样品在测试过程中,三维方向的运动是通过三根压电陶瓷的位移产生信号放大、反馈、数据采集、显示2、 过程1、把用探针的小矩形用双面胶贴好,矩形伸出的长度一般为小于或接近长边的一半,用四个控制螺钉调节激光器,使激光照在三角形的边上,直到产生衍射条纹,并且衍射条纹在PSD左侧,不能在PSD光敏面上,倾斜方向 \ ,光斑中心居中,激光照在三角形边上达到衍射条件时将产生强的反射光;

2、用双面胶把待测样品粘在样品台上,双面胶要贴平,样品要测得地方不能太靠样品台中心,因为在测试时探针接触的位置不是在样品台的中心,然后把样品台固定在三根压电陶瓷构成的支杆上,适当转动样品台,使待测样品的中心与探针的位置相对;3、用粗调使试样向探针运动,此时为了观察可把激光关了,当接近至1~2mm时打开激光,使用细调,观察控制面板上PSD反馈信号、Z轴反馈信号的变化、衍射光斑的变化,但衍射光斑移动时说明已进入原子力的作用范围,应缓慢调节旋钮,在光斑移动迅速的时候应适当方向调节旋钮,防止调过,在PSD信号为1.6,Z轴反馈信号-200~-300时即可进行测试。

3、出现的问题和解决方法

3.1 Z轴反馈信号不稳定当在调节的时候Z轴反馈信号不稳定,而且跳动很大时,就不能进行测试,产生这样的情况主要可能有两点:1、表面状态特殊,适当旋转样品台,从新选择测试位置;2、探针松动,因为探针是用双面胶粘的,在测试过程中,来回运动将是探针松动,这时由于探针的不稳定跳动将使反馈信号不稳定;

3.2 光斑不对对光斑的主要要求有:
1)衍射条纹要清楚,这要通过调节四个旋钮达到良好的衍射;
2)光斑要在PSD的左边,如果不对可能是由于针粘的不平,重新调整针的位置,将针贴平;
3)光斑的中心位置不对,这可能针固定的位置不对,适当旋转粘贴探针的铁圈,针的位置中间和伸出的长度为长边的一半或小于一半;
4)如果在调节距离的时候光斑不仅出现左右运动还有明显的上下运动,可能是由于支撑探针的三角形边断裂,在达到原子力范围时探针受力不均,此时可更换探针。

3.3 反馈信号弱首先保证打开高压电源,如果反馈信号弱将导致图像不清甚至不能测试
1)电池电量不足,激光灯强度变弱;
2)确认反馈旋钮1~2圈,PSD旋钮2~4圈,在此前提下如果反馈信号弱可适当调大反馈旋钮;
3)光斑应在PSD的左侧接近光敏面而不应该在光敏面上;
4)激光器出现问题,更换激光器;

3.4 像问题首先要有一块标准样品,在出现问题的时候测试标准样品,确认设备的问题:
1)探针上被粘上东西,通过快速扫描,把探针上的东西甩掉;
2)探针长期使用,磨损了,更换探针;
3)测试过程中Z方向超出范围,可能是样品贴的不平或样品本身起伏大,这时重贴样品或者把样品台旋转位置.

阅读全文

与afm测试常见问题及解决方法相关的资料

热点内容
小s清脂套使用方法视频 浏览:309
被套安装方法图解 浏览:635
解忧大队锻炼方法 浏览:957
水准计算方法定义 浏览:203
如何排肺毒最有效的方法 浏览:480
跨栏跑过栏技术实践教学方法 浏览:473
怎么杀老甲鱼最有效方法 浏览:672
怎样快速通便拉得又多土方法 浏览:84
蓝净灵的使用方法 浏览:335
广东pvc木饰面安装方法 浏览:183
公司管理方法叫什么 浏览:14
鉴别红薯最好的方法 浏览:877
4g手机电话转移在哪里设置方法 浏览:428
禁食水的正确使用方法 浏览:436
水泥膨胀剂的使用方法 浏览:465
怎么教股票开盘方法 浏览:674
582减198简便方法 浏览:432
问题要有解决方法的名言 浏览:545
剩米饭和豆皮怎么做好吃简单方法 浏览:179
口才训练16种方法 浏览:653