‘壹’ 利用质谱技术进行临床癌症蛋白质组学研究
肿瘤生物标志物是目前肿瘤临床研究的关键点,因此在早期诊断、风险分级和检测患者的治疗应答等方面需要不断挖掘新的生物标志物并加以验证。基因组和转录组研究已经发现了很多可用的标志物,但蛋白质表达改变更能反映出肿瘤病理生理学的变化。在过去,临床诊断一直依赖于基于抗体检测的各种方法,但这些方法都存在局限性。而质谱(MS)是一种强大的方法,使人们能全面洞悉蛋白质组的变化,从而促进个性化医疗的发展。本文将以肿瘤学为重点介绍基于MS技术的临床蛋白质组学的研究进展,对临床样品制备、蛋白定量检测方法、MS配置和数据分析进行详细叙述。此外,MS技术灵敏度不断提高,涌现出新形式的肿瘤特异性蛋白标志物如翻译后修饰和源于基因组畸变的变异。这些进步不仅巩固了以MS为基础的临床蛋白质组学在癌症研究中的地位,还使其向成为常规分析和临床实践的方向加速发展。
临床样品的制备方法
对于临床组织研究,为了保证从手术切除到蛋白质酶解过程中的蛋白质量,正确的保存方式非常关键。有几种方法可以选择:新鲜冷冻(FF)、福尔马林固定石蜡包埋(FFPE)和OCT包埋。FF与FFPE相比可检测到更多的蛋白质,但现有的FFPE已经储存了几年甚至十几年,是临床随访等回顾性研究的重要样品来源。虽然组织的蛋白质组学研究可探究生物机制信息,但临床蛋白质组学研究以发现新的生物标志物为主要目标,因此“体液”样品如血液(血清、血浆)、尿液、唾液、泪液和脑脊液等是较为理想的样品形式,还可用于检测癌症和治疗反应发展的纵向研究中。当临床样品质量不足以支持研究时,可考虑使用模型系统如转基因动物模型、癌细胞系、异种移植模型(CDX、PDX)、类器官等。
蛋白质组样品制备没有统一的方案,要根据样品复杂性、样品量和研究目的选择合适的方法并优化。制备的主要方法有FASP、MStern、S-trap、SP3和iST等。这里以FASP为例进行介绍。FASP,即过滤器辅助的样品制备法,首先使用阴离子表面活性剂十二烷基硫酸钠(SDS)溶解蛋白质,然后使用分子量(MW)过滤将蛋白质结合到硝酸纤维素过滤器上,而较低MW的物质则被过滤掉,连续的尿素洗涤有助于更好地去除SDS,最后是过滤器上的蛋白酶解和洗脱获得多肽产物。
MS检测原理及流程
为了在检测时增加蛋白质组的覆盖率,肽段样品首先通过反相液相色谱等方法分成不同馏分后进入MS分析。利用软电离技术(ESI或MALDI)对肽段进行离子化,雾化的多肽可以通过离子迁移率进一步分离,从而降低一级质谱(MS1)的复杂性和二级质谱(MS2)的污染,并最终实现更大的蛋白质组覆盖率。这样的技术包括离子淌度(TIMS)和高强场离子迁移谱和(FAIMS)。在质谱扫描模式的选择上,传统的数据依赖采集(DDA)模式在蛋白质组学研究非常成熟,且兼容基于标签的定量技术。在DDA中,MS1扫描结果中信号最强的前n个母离子才会被选择并进行顺序碎裂和MS2检测。但是,这种模式的检测重复性差,且存在MS1中高丰度肽影响低丰度肽检出的问题。由于DDA的缺点,蛋白质组学研究开始倾向于使用数据非依赖采集(DIA)模式。在该模式下,在多个小范围的质荷比窗口中的所有母离子顺序碎裂产生更复杂的MS2结果。然后将这些结果与预先定义好的谱图库进行匹配,通过大范围的肽分级达到最大的蛋白质组深度。
蛋白定量检测方法
蛋白定量检测技术多种多样,按照检测范围可分为靶向与非靶向技术,也可按照定量方式分为相对定量或绝对定量技术。其中,相对定量技术又可分为标记技术(TMT和iTRAQ)和非标记技术(label-free、DIA)。标记相对定量技术中TMT标签可增加样品通量到16个。然而, TMT方法需要多级的肽分级来获得深入的蛋白质组图谱,并且1-2个TMT通道常用于检测所有样品的混样来减少批间差,这降低了各个项目之间进行有效比较的能力,并增加检测成本。而label-free技术,得益于数据分析软件的发展,可以从MS1的肽离子峰分数计算出蛋白质的相对丰度。与标记技术相比,非标记技术具有更宽广的动态范围,但精准度会稍差一些。因此,对于患者间和患者内存在较大蛋白质表达差异的临床样品,label-free定量技术更适合鉴定出更多的差异表达蛋白。
通过非靶向相对定量检测技术筛选到的目标蛋白质需要进行表达验证,如基于抗体的ELISA和基于MS的靶向分析技术。其中,基于MS的靶向定量技术有多反应检测(MRM)和平行反应检测(PRM)两种。MRM使用三重四极杆质谱仪进行分析,需要先确定目标母离子和碎片离子的质荷比,由四极杆选择母离子和3-5个相关碎片离子的组合并进行定量分析。而PRM利用高分辨率质谱提高特异性。PRM中所有碎片离子都是在分析中生成并被记录,所以只需要确定目标母离子的质荷比并直接从二级质谱中选择最好的碎片离子即可进行定量分析。如果加入用稳定同位素标记的肽标准品做对照,这两种靶向技术可达到绝对定量水平。两种技术相比,PRM能可靠地监测更多的靶点。
临床蛋白质组学的应用方向
在肿瘤学研究中,组织分析能够最准确地反映肿瘤的生理状态,发现生物标志物、生物学通路,并与现有的基因组学和转录组学结果整合做多组学分析。这类研究通常使用同一患者的癌组织样品和癌旁“健康”对照样品比较寻找潜在的诊断biomarker。同时,对不同癌症分期患者比较获得预后信息。当鉴定到较少数量的候选蛋白后,就可以利用通路分析深入了解这些蛋白是如何与肿瘤发生、增殖、转移和其他癌症驱动过程相关的,随后在独立大队列样品中补充差异表达蛋白的验证实验。总结目前科研现状,癌症蛋白质组学的研究方向主要有寻找风险预测、癌症分级和预后的标志物、确认有效的治疗靶点和翻译后修饰如磷酸化、乙酰化、糖基化等。此外,肿瘤异质性问题对单细胞水平的蛋白质研究提出了要求。基于质谱的质谱流式技术可以在单个细胞中监测几十个蛋白质标志物,将抗体探针和独特的重金属同位素连接在一起后与细胞孵育,然后细胞被感应耦合等离子体(ICP)雾化,金属离子向质谱仪提供目标蛋白在样本中的定量读数。
2019年10月在《Cell》上发表的“Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma”一文中,作者利用多组学研究思路,对159位感染乙型肝炎病毒的肝细胞癌患者的配对癌组织和癌旁肝组织进行了基因组、转录组、蛋白质组和磷酸化蛋白质组研究,发现了代谢改变对肝癌晚期发展和不良预后的影响,并对肝细胞癌进行了蛋白层面的精准分型,为个性化靶向治疗提供了新策略。
临床蛋白质组学的研究前景
随着标准化、高通量的蛋白质组学技术不断发展,临床研究将向着更大队列的方向进步,这将使蛋白质组学研究结果更具有统计学意义,并提高蛋白标志物和药物靶点临床转化的效率。另一方面,蛋白质组学将通过集成基因组学、表观基因组学、转录组学和翻译后修饰组学等多组学数据,成为癌症系统生物学的重要组成部分。
参考文献
Macklin, Andrew et al. “Recent advances in mass spectrometry based clinical proteomics: applications to cancer research.” Clinical proteomics vol. 17 17. 24 May. 2020.
Zhang, Yaoyang et al. “Protein analysis by shotgun/bottom-up proteomics.” Chemical reviews vol. 113,4 (2013): 2343-94.
Gao, Qiang et al. “Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma.” Cell vol. 179,2 (2019): 561-577.e22.
‘贰’ 质谱检测是什么
质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。
质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。
质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。
质谱分析
是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图。
从而确定其质量。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。
‘叁’ 抗体检测怎么检测(核酸、抗原、抗体检测)
自 2020 年新冠疫情爆发以来,“核酸检测”作为一项检测是否感染的重要指标,开始反复出现在我们的生活中。2022 年 3 月 10 日,国务院应对新型冠状病毒肺炎疫情联防联控机制综合组发布通知,决定推进“抗原筛查、核酸诊断”的检测模式,在核酸检测基础上增加抗原检测作为补充。
抗原检测是什么?和其他的检测手段有什么不同?这篇文章,我们以新型冠状病毒为例,讲讲常见的快速筛查手段,聊聊相关的原理以及适用范围。
想要对一种疾病或是一种物质进行筛查,我们首先要弄清楚的就是“从何下手”的问题,其次是“如何检测”,让微观世界的变化反映到我们眼前,帮助我们作出判断。
我们面对的是病毒。根据大家耳熟能详的中学生物课知识,病毒是一类由遗传物质和蛋白质外壳组成的类生命体 。如果想对病毒的感染情况进行探测,就需要从它的组分下手。接下来的内容,希望大家带着自己中学的生物知识阅读。
以目前正在困扰我们的 SARS-CoV-2 为例。它属于冠状病毒科下,冠状病毒亚科的乙型冠状病毒属,是已知的第七种能够感染人类的冠状病毒。所有的冠状病毒都是具有 包膜 的 正义单链 RNA 病毒 ,也就是说,它们的遗传物质是一条单独的 RNA 链,并且这条 RNA 链可以直接作为 mRNA(信使 RNA)参与翻译,指导蛋白质的合成。
编号为NPRC 2020.00002的毒种,图片由国家病原微生物资源库(中国疾病预防控制中心病毒病预防控制所)提供。
我们现在的目的是检测标本中是否存在这种病毒,无论是检测它本身,还是检测病毒带来的产物,能够下手的方向也就是两种:蛋白质外壳(包膜)、遗传物质。
顺着这个逻辑,那最显而易见的方法就是检查它“能不能看到”,但病毒本体小得很,SARS-CoV-2 的直径在 80-120 nm,要想每个标本都拿电镜过一遍是不现实的,人力物力和财力都撑不住。那么更经济实惠的方法,就是通过某些措施,让 病毒的组分 ,或是因为病毒而出现的 某些特殊物质 积攒到一定数量级后发光、变色,出现 宏观表现 。
那么我们的问题就转化成了,选择一种可以观察到宏观尺度变化的方法,和病毒的组分、病毒引发的某种物质产生关联。我们能选择的物质也摆在台面上:病毒的遗传物质,在这里是它的 RNA;病毒的包膜,也就是蛋白质外壳;以及,如果你还记得一些基础的生物知识,人体的免疫系统会在感染病毒之后产生抗体以抵抗入侵,它也是不错的选材。
我们目前采用的几种检测方式,也就从这些物质(以及它们的相关物质)脱胎而来,分别为针对遗传物质的核酸检测,针对包膜的抗原检测,以及针对抗体的血清抗体检测。
作为病毒的遗传物质,核酸序列载写了能够鉴定病毒为某一特定种的基因特征,因此核酸阳性,也就意味着病毒在体内存在过。
我们目前进行的“核酸检测”其实分为两个部分。平常我们进行的“捅鼻子”“捅嗓子”取样和后续的定性是第一部分。在取得标本之后,因为病毒量太少,样本会在实验室中进行一定次数的扩增,并根据荧光反应结果来判定阳性阴性。
第二部分,确定为阳性的样本,还需要通过基因测序,确定样本病毒的分型,以便溯源。这一步已经不属于日常筛查的范畴,但在流行病学调查上具有重大意义,如果有兴趣了解,可以参看 Wikipedia 简要了解。
我们平常参与的作为 筛查 工具的核酸检测,指的就是采集到定性的第一部分。
在感染了 SARS-CoV-2 之后,咽拭子、痰、下呼吸道分泌物、血液等标本中均可发现病毒核酸。不同部分标本核酸检测的阳性率有一定差异,随着病程进展,各个部位的检出率也会发生变化。
我们习惯称呼的“鼻拭子”与“咽拭子”,其实都是采集咽腔后壁的分泌物与组织,前者采集鼻咽,后者采集口咽。也有采用其他标准的,比如唾液等亦可作为检测标本,本质上也是不同地区规定有差异
鼻(咽)拭子与(口)咽拭子已经是综合了阳性率与便利程度的考量。粪便和尿液等其实也可以作为标本采集的对象。而且根据一项对 31 例患者的研究,肛拭子的准确率要高于鼻咽与口咽采样,尤其病程后期,肛拭子确诊病例的鼻拭子阳性率不到 30%。 4 但显然,由于操作的限制,它无法作为早期筛查的首选手段。
接下来的工作,就是从获取的那一点点标本中提取核酸。由于样本中病毒的数量级很小,不足以拿来分析,还需要将其扩增并标记。需要用到的同样是高中学过的知识:聚合酶链式反应(PCR)——这一步看起来麻烦,但由于它的原理和工序已经研究成熟,实际操作中只需要加好试剂送机器,整个核酸检测的过程里最麻烦的还是让待测者安安分分弄来标本(笑)。
各地疾控机构或检测中心会采购合适的核酸 提取试剂盒 与核酸 检测试剂盒 。提取试剂盒负责将 RNA 从混杂的样本(细胞碎屑、分泌物、灰尘等杂质)中提取出来,常见的有磁珠法、离心柱法和释放剂法,不同提取方法可能对后期检测的准确度略有影响 。之后,提纯出的 RNA 就会移交给检测试剂盒(也有一些试剂盒将两者合一),进行之后的工序。
检测试剂盒带着样本在机器中进行的过程,就是这个检测中最主要的反应:RT-qPCR(实时定量逆转录聚合酶链反应)。
接下来需要你捡起高中生物的知识。一般的 PCR 反应有以下几步:
加热:让双链 DNA 解旋变形,成为两条单链; 退火:让混合的单链 DNA 与根据需要复制的片段而设计好的引物结合; 延伸:调整温度,让 DNA 聚合酶顺着引物开始工作,复制出新链,形成新的双链。在对病毒的探测中,我们要做的工作也无非上面几步,只是需要多出两样东西:
在第一次反应之前,使用 逆转录酶 (依赖 RNA 的 DNA 聚合酶),合成病毒单链 RNA 的互补链,组合成 cDNA ; 在退火与延伸的阶段,除了引物和所需的酶外,还需要 TaqMan 探针 。你可以把 TaqMan 探针这样理解:它的主体部分是一段寡核苷酸链,被设计成能和一小部分需要复制的基因片段配对成双链的样子;它一端接了一个荧光分子,另一端接了一个开关(淬灭基团),两者和探针相连时,荧光就会被淬灭基团压制,探测不到。退火时,这个探针会和引物一起结合在要复制的单链片段上。在延伸的过程中,DNA 聚合酶会把挡在面前的障碍物切碎,其中就包括这段探针,淬灭基团和荧光分子就这样分离,荧光就表现出来。
随着循环数的增多,扩增的 DNA 片段和荧光也越来越多。对比每个循环的荧光亮度和前若干次循环的基准亮度,我们就能得出目前的 DNA 片段量,也可以直接用循环数和荧光亮度做定性的判断。
那么具体复制哪一部分呢?既然要探测病毒,那我们就选取最有代表性的核酸片段。现行的标准中,ORF 基因与 N 基因是常用的检测位点。
检测试剂盒负责的就是将提取出的 RNA(样本)投入后,根据试剂盒上的程序说明,设定对应的 PCR 温度与时长,由机器控制完成扩增过程,在固定的环节收集荧光信号,记录对应的循环数(Ct 值)。判断阴性阳性 / 是否还具有传染力的标准,就是看荧光信号达到阈值时,目前循环数是多少。根据目前现行的《新型冠状病毒肺炎诊疗方案(试行第九版)》,解除隔离管理的标准为 Ct 值 ≥ 35 。和此前通行的 ≥40 标准相比,出院与解除隔离的时间会大大缩短 。
经 RT-PCR 的核酸检测到现在都是确诊的金标准,因为它在方法学的角度看来,(理论上)可以做到 100% 准确。但核酸检测耗时长、对环境与操作人员要求高,在环境条件达不到标准、物资与仪器不齐全等情况下,大批量的核酸检测会带来巨大人力与财力消耗。
在本次疫情中,我们采用的免疫测定包括了快速抗原检测与抗体检测,它以 抗原-抗体反应 为基本原理,旨在通过抗原与抗体快速的中和效应,以较少的时间成本探测样本中是否存在待测物。两者都属于免疫层析法的范畴。
以盒装方式出现、可以自行操作的抗原检测就很适合作为物资不足、自我测定等情况下的补充。
核酸检测检查的是病毒的(标志性)遗传物质,是病毒的“内里”。那么(快速)抗原检测检查的就是病毒的“外在”,直接检查完整的病毒颗粒。目前通过审批的抗原检测试剂盒包括三种类型:胶体金法、乳胶法、荧光免疫层析法。三者内在原理一致。但其中荧光免疫层析法试剂盒仍然需要专用的检测仪或紫外线手电,不适合家庭自测;胶体金法和乳胶法则都是将检查结果转化成肉眼可见的条带,差别在于用于标记上色的物质不同。
当然,抗原检测自然有它的劣势在,它的 假阴性率 (是阳性但显示阴性)要更高,可能导致漏检错检。但放在一杯茶就能出结果的时间优势面前,准确性上的差距在某些特定情况下可以暂时让步。
图源:How the SARS-CoV-2 EUA Antigen Tests Work | ASM.org
和核酸检测相比,抗原检测增加了“鼻拭子”这一采样途径,降低了个人自测的难度。拭子上的样本在缓冲液中洗脱,取液体滴加在加样孔后,液体会因为毛细作用,带着潜在的抗原,经过一片预载了抗体的区域(结合垫,conjugate pad)。
这片区域上的抗体,是抗目标抗原(SARS-CoV-2)的单克隆抗体,每一个抗体分子都和特别的标记结合,它们与样本中的抗原发生反应,形成抗原-抗体复合物,并随着毛细作用向下一条带流去。
紧接着经过的是检测线(T 线,test line),在检测线上附着的同样是抗目标抗原的单克隆抗体,你可以理解成这里的东西和结合垫上的一样,只是没带标记。此时,如果受测者已经感染了 SARS-CoV-2,他留在样本中的抗原形成的抗原-抗体复合物,会在此处与固定在线上的抗体再次结合。在这里,这些带着标记的复合物不断沉积,最终会显示出一条或深或浅的条带。条带的颜色来源,就是之前结合垫上的抗体分子附着的标记,在胶体金法中是胶体状态的金颗粒,在乳胶法中是上色的乳胶滴,在荧光法中是荧光分子。所以你在使用这类试纸时,会发现刚刚加样结束,液体刚开始扩散的时候,扩散的最前端会有一点点很淡的颜色不断推移,这就是还没有固定沉积的标记的颜色。
接下来,液体继续扩散,经过质控线(C 线,control line),在质控线上附着的是另一种抗体——‘抗“抗目标抗原的单克隆 抗体 ” 的 单克隆 抗体 ’,简称“ 二抗 ”。这种新的抗体是让上一种抗体在另一种动物的免疫系统中反应得来的,比如结合垫的抗体来自兔,那这里的抗体就来自羊,是羊抗兔的单克隆抗体。也就是说, 二抗的抗原是 之前在 结合垫上的抗体 。这条线就是为了检测液体有没有正常扩散、结合垫上的抗体有没有失效等等而存在的。此时,液体中剩余的大量来自结合垫的抗体就会作为抗原,与质控线上的二抗发生抗原抗体反应,形成复合物,显出一条明显的条带。
由于结合垫上的抗体非常充裕,这条质控线条带会出现得非常快、非常显色,而检测线由于抗原(病毒)数量不一定,显色速度会有差别,但一般在 15 分钟内就足够判断结果。所以不要看 C 线很明显,T 线隐隐约约就觉得“没事了”, T 线不管深浅,只要有,就是阳性 。
具体操作方面,可以参考医政医管局发布的 教学视频。目前国家也在逐步推广抗原自测试剂盒,在一定程度上可以减轻未来医疗与街道的压力。
除了前两种检测手段外,还有一种使用不太多,但同样重要的检测方法,就是同属免疫测定方法的“血清抗体检测”。
抗体检测采用的试剂盒与抗原检测非常接近,但标本的限制更大——由于检测的对象变成了抗体,标本就必须是明确有抗体存在的血液(或血浆、血清)。而且人体在初次感染病毒后,并不会第一时间内产生抗体。抗体能够明确达到被检测的数量级,一般是在初次感染(或接种疫苗)的一到两周之后。这些条件限制了抗体检测不能作为确诊性质的检查。目前,血清抗体检测仅作为一定情况下检查疫苗是否生效,或查验受测者近期是否感染过新冠病毒的方法。
在人体中有五种抗体,分别是 IgA、IgD、IgE、IgG 和 IgM。IgA 主要负责黏膜免疫。IgD 与免疫反应激活有关。IgE 抵御寄生虫,同时也参与过敏反应。剩下的 IgG 与 IgM 就是对抗病原体的过程中,免疫系统派出的主力军。
SARS-CoV-2 作为病原体,人体经刺激主要分泌的就是 IgG 与 IgM 两种。现有的抗体检测试剂盒,主要也是针对人体对 SARS-CoV-2 的 N 蛋白(核衣壳蛋白)或 S 蛋白(刺突蛋白)产生的 IgG 与 IgM。
抗体试剂盒的检测装置外观和抗原检测别无二致。二者的差别就是上文中提到的结合垫、检测线、质控线上附着的物质。
这次,加样孔中滴入的样本可能有对 SARS-CoV-2 的抗体。因此,结合垫上就应当是带了标记物的抗原——当然不可能放活病毒上来。一般这里使用的都是设计检测的抗原蛋白,比如前文提到的 N 蛋白或 S 蛋白,或是重组病毒,无论是哪种,它都必须包含受体结合域(RBD)作为抗体结合的靶点。在检测线上,附着的就是抗 IgM 或抗 IgG 抗体,以捕获结合了抗原的抗体蛋白。最后,质控线上附着抗原的特异性抗体,捕获剩余的游离抗原。
总的说来,三种检测方式针对的是不同的需求,互有优势,互相补充。核酸检测作为金标准,直接查验病毒的 RNA,负责看被检者带不带病毒;抗原检测作为快速检测方法,查的是病毒的蛋白质,但准确度不如核酸检测,对传染力强的感染者更有效;抗体检测查的是疫苗有没有生效、人近期有没有感染过病毒。
近期,新冠疫情在各地卷土重来。Omicron 变种与此前流行的 Delta 变种相比,虽然病死率与重症率明显下降,但潜伏期更短,病毒复制速度更快,传染力明显增强。希望大家在这样的环境中保持健康。
‘肆’ 免疫测定法与液相色谱串联质谱法的优缺点
免疫测定法与液相色谱串联质谱法的优缺点如下,
认识到液相色谱-质谱/质谱是一项战略技术,许多临床实验室现在正在使用它来代替其他方法。传统上,免疫测定主要用于测量低分子量化合物。然而,它们受到一些限制,包括特异性问题、不同制造商的测试之间缺乏一致性,以及由于抗体的交叉反应性不同,同一制造商的批次之间存在差异。此外,异嗜抗体和钩效应可能会限制许多免疫测定的动态测量范围。
另一方面,质谱/质谱对许多分析物具有优异的选择性,因为它通过至少两个物理特征来识别它们,——它们的母离子和产物离子质量。随着软电离技术(如电喷雾电离和大气压化学电离)的引入,低分子量分子可以在液相中电离,从而实现高性能液相色谱和质谱/质谱的耦合.当质谱与液相色谱结合使用时,保留时间增加了另一个属性,以正确识别分析物,从而提高特异性。
检验科也经历过厂家意外将免疫检测退出市场的情况,这让实验室疯狂寻找替代方法将检测结果返还给订购医生。这些经验为实验室改用液相色谱-串联质谱法提供了另一个理由
质谱/质谱还显示出灵活性和多功能性,使实验室能够在美国食品和药物管理局批准的用于测量生物标志物或新批准药物的试剂盒或免疫测定进入市场之前,提供新的实验室开发的测试(LDT)。此外,与免疫分析和其他方法相比,液相色谱-质谱/质谱的灵敏度可能会使某些分析物(如类固醇)的检出限较低。
液相色谱-质谱/质谱的另一个优点是,它使临床实验室能够同时对各种感兴趣的分析物进行多重分析、鉴定和定量。多路复用降低了每次测试的成本。与固相萃取或衍生化等更耗时、更昂贵的样品制备方法相比,液相色谱-质谱/质谱通过简化或最大限度地减少某些应用(如稀释和注射或蛋白质碰撞)的样品制备,提供了其他成本节约和更高的通量。在其他方法中,如气相色谱(GC),极性化合物的衍生化或化学修饰是必要的,因为这些化合物必须具有足够的挥发性才能进行分析。然而,衍生化过程增加了样品制备的时间、人力和成本。
‘伍’ 自身抗体的检测方法有哪些
1、抗核抗体检测
抗核抗体是一组将自身真核细胞的各种细胞核成分作为靶抗原的自身抗体的总称,主要是IgG,其次是IgM和IgA,无器官和种属特异性。ANA在大多数自身免疫性疾病中均可呈阳性,正常老年人也可有低滴度的ANA。ANA检测在临床自身免疫病诊断与鉴别诊断中是一个重要的筛查试验。
2、类风湿因子
类风湿因子是变性lgG刺激机体产生的一种自身抗体,主要存在于类风湿关节炎患者的血清和关节液内。主要为lgM型,也有lgG、lgA、lgD和IgE型。
3、抗中性粒细胞胞浆抗体
抗中性粒细胞胞浆抗体是指与中性粒细胞及单核细胞胞浆成分发生反应的抗体。当中性粒细胞受抗原刺激后,胞浆中的α-颗粒释放蛋白酶-3、髓过氧化物酶等物质,刺激机体而产生ANCA。
自身抗体的产生原因:
人体的生长、发育和生存有完整的自身免疫耐受机制的维持,正常的免疫反应有保护性防御作用,即对自身组织、成分不发生反应。—旦自身耐受的完整性遭到破坏,则机体视自身组织、成分为“异物”,而发生自身免疫反应,产生自身抗体。
正常人体血液中可以有低滴度的自身抗体,但不会发生疾病,但如果自身抗体的滴度超过某—水平,就可能对身体产生损伤,诱发疾病。自身免疫性疾病中有许多自身抗体,其中最重要的是抗核抗体。
‘陆’ 样本前处理(三)
蛋白提取的质量控制
我们通过上一篇笔记里介绍的各种方法把蛋白质提取出来以后,这事儿还没完,因为我们需要对提取出来的蛋白进行一下质控,以确认是否成功提取出了足够的蛋白,是否有污染等。
如上图,质量控制分两个部分:
含量测定 :检测是否有充足的蛋白被提取出。注意上图里提到的不兼容问题,如果你样品里加过SDS,就不要用Bradford法来测定蛋白浓度,而可以选用BCA方法;反之,如果你样品里加入了还原剂,就不要用BCA方法来测定蛋白,可以选用Bradford法。
SDS-PAGE :检测蛋白的提取效率,以及是否有污染。比如我们上了50个样,能看到的条带却很少,说明定量不准确。如果想从几组样品中寻找差异蛋白,特别需要做一次SDS-PAGE检测同类样品蛋白的提取效率。
以上图为例,0号样品中间的条带不见了,可能是提取蛋白不充分引起的差异,也可能是样品本身的差异。我们可以重新提取一次,先排除是否是提取造成的差异;如果是样品本身的差异,建议用label free的方法,每个样品单独做定量,而不要用iTRAQ或TMT标记定量,否则会因为中间这个高丰度蛋白的影响,而导致定量不准。
我们再看来几种常见的问题,以及解决方法,如下图:
情况1:提取出来的结果差异很大。这种情况需要重新提取,以检测到底是提取不充分造成的差异,还是样品本身的差异;
情况2:左边是分子量marker,右边是实际样品,可以看到实际样品的条带很少,可能是提取不充分,需要重设提取参数,使用更剧烈的条件,更长的时间,重新提取;
情况3:横纹、纵纹比较多,很可能是核酸或脂蛋白的影响,这种情况需要进行脱盐处理,也就是利用脱盐柱与肽段结合,而与其它物质不结合,从而达到去除污染的目的。
情况4:两个条带很类似,但一条明显比另一条淡。可能造成这种情况的原因有哪些呢?第一种情况,由于这是同样类型的样品,比如都是小鼠肌肉组织,一个样品的蛋白质抽提充分,而另外一个样品蛋白抽提不充分,就会导致两条带不一样,这种情况下需要重新抽提。还有一种可能,考虑到是等量上样跑的SDS-PAGE,如果两个条带显示出的蛋白含量差别很大,则可能因为参考的含量测定结果不准确引起的,这时候需要重新定量。
脱盐
蛋白提取后,还需要做脱盐处理,我们来看看可以用哪些方法实现。
超滤: 可以截留10kDa及以上的蛋白分子,适用于体积较小的样品。操作步骤可以是,从100μL超滤浓缩到40μL,再加缓冲液至100μL,再超滤到40μL,反复几次。事实上,超滤是很难把污染(比如SDS)完全去掉的,最终仍然会有极少量的污染物存在,但当这些污染物的浓度降到一定程度时,则样品的纯净度我们认为是可以接受的了。
Tips :
样品中的尿素浓度需要控制在1M以下才能不对样品造成影响,我们提取蛋白时使用的是8M尿素,直接稀释8倍的话,造成样品体积太大,下一步加入酶后,则酶和蛋白的浓度会特别低,酶解效果受到很大影响。另外,体积太大处理起来也不方便。这时也可以使用超滤的方法,多步稀释,将尿素的浓度降到1M以下。
透析 :也是可以截留10kDa及以上的蛋白分子,适用于体积比较大的样品,比如尿液,可以将盐透析至外面的透析液里。
丙醇沉淀 :-20℃丙酮(V样品:V冷丙酮=1:3以上)沉淀2个小时以上。
C18色谱柱脱盐法 :Waters公司生产的XBridge C18色谱柱,利用柱子上的填料与蛋白结合,而盐类物质则流穿过去,从而达到分离的目的。
还原烷基化及酶解
脱盐完成以后,接下来我们就要进行相当重要的一步:还原烷基化及酶解。整个流程,大伙儿看下面这张图:
这里面有两件事要先跟大伙儿聊聊。
首先,我们来说说为什么步骤里要把丙酮沉淀放在烷基化以后。通过之前的学习,我们知道丙酮可以溶解样品的去污剂、还原剂等,而蛋白是不会在丙酮中溶解的,而是会沉淀下来,这样就达到了去除杂质的目的。
烷基化以后,球状蛋白变成链状,再通过丙酮沉淀去掉尿素或SDS等污染物,然后复溶(即重新溶解,以备下一步酶解操作),那么链状的蛋白比球状蛋白的复溶效果会更好,可以避免因为复溶不充分而造成的损失。因此,丙酮沉淀要放在烷基化之后再做。
另外,关于酶切这一步,有些抗体如果只用胰酶进行酶切,由于酶切位点太少,导致切出来的肽段太长,不便于质谱检测。这种情况下可以结合其它酶,比如Lys-C,进行多酶酶切,使肽段变得短一些。经过测试我们发现,用Lys-C+胰酶酶切,比只用胰酶酶切,可以提高10%-20%的鉴定率。
酶解需要在buffer体系下完成,比如25mM碳酸氢铵体系(易挥发,pH 7-8)最为常用,或者也可以使用TEAB( triethyl ammonium bicarbonate,三乙基二乙胺盐,10-100mM)。
Tips :
如果做iTRAQ(或TMT)标记,最好用TEAB,而不是碳酸氢铵体系。因为iTRAQ(或TMT)试剂是标记末端氨基,碳酸氢铵上的氨基也会被标记上,影响蛋白的标记效率。
酶的用量可以参考以下的公式:
W(酶):W(底物)=1:20 – 1:50
此外,需要注意的是胰酶酶解的兼容性问题。胰酶只能耐受最多1M的尿素,且不能与SDS同时使用。
蛋白质及肽段的预分级
前面提过,质谱仪是一种离子饱和性仪器,高丰度蛋白的存在会对低丰度蛋白的信号产生抑制,并且质谱仪反应也需要一定的时间。例如,人的细胞内通常会表达20300种蛋白,它们酶解后,每种蛋白会产生10-20种肽段,那么就有几十万种肽段,质谱很难同时检测到这么多种肽段。所以对肽段混合物进行分级,可以降低检测的难度,得到更多的肽段/蛋白鉴定结果。
我们既可以从蛋白水平进行分离,也可以从肽段水平进行分离,还可以将多种分离手段结合起来。从蛋白水平的分离,大家都比较熟悉吧?通常我们用SDS-PAGE或IEF等技术,利用蛋白质的分子量、形状、等电点等理化性质的不同,将混合在一起的蛋白质分开。
第二种分离方案是在肽段水平上进行,根据肽段的不同性质,使用不同填料进行分离。
SCX(Strong Cation Exchange):是以硅胶为基质的强阳离子交换柱,可以与阳离子结合,并通过buffer进行离子交换,将阳离子分离和洗脱出来,达到与其它不带阳离子的肽段分离的目的。
SAX(Strong Anion Exchange):硅胶键合季铵基团的强阴离子交换柱,可以与阴离子结合,并通过buffer进行离子交换,将阴离子分离和洗脱出来,达到与其它不带阴离子的肽段分离的目的。
RPLC(Reverse Phase Liquid Chromatography):反相液相色谱柱,与正相柱在表面键合极性官能团不同,反相柱的表面键合的是非极性的官能团,例如,键合十八烷基官能团,称为C18柱,其它常用的还有C8,C4和C2等。这里我们选用C18柱,根据肽段疏水性的不同,达到分离的目的。
HILIC(Hydrophilic interaction liquid chromatography ):亲水色谱柱可以用来分离极性化合物。由于强极性肽段在反相色谱柱中保留情况都比较差,很难将它们分开,而亲水色谱柱却可以用来固定强极性的肽段,并结合高比例有机相与低比例水相组成的流动相,来实现分离的目的,且这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。
High pH - Low pH RPLC:用pH10的液相条件,结合pH2的RPLC酸性条件,进行分离。
Tips :
通常,我们通过RPLC与质谱联用。因为RPLC体系是用水和乙腈,易挥发,不含盐,可以直接送入质谱进行检测。而像SCX/SAX这类正相柱,需要通过高盐的体系将样品洗脱下来,所以它与质谱不兼容。我们在做多级分离时,前面都会有各种盐的洗脱,最后才是RPLC,然后就可以直接连质谱了。
多维分离:例如,先从蛋白水平进行分离,再从肽段水平进行分离,或者多种肽段水平的分级分离结合起来使用。接下来我们重点聊一下各种多维分离的策略和效果。
我们先来看看上面这张图。左上角的“A图“展示的是通过High pH - Low pH RPLC将样品分成了40个馏分,然后进行叉开的合并,合并为20个馏分,这样的合并可以让样品中的肽段分布更加均匀。
右上角的”B图”展示的是通过SDS-PAGE进行分离,也分成20个馏分,然后用两种合并方案,分别合并为5个馏分和6个馏分,这样做的目的也是为了让样品的肽段分布更加均匀。
左下角的“C图”针对同一种样品,对High/Low pH RPLC和SDS-PAGE两种分离策略进行了比较,发现经过两种分离方法后,有5408个蛋白是都可以鉴定到的,另外有1951种蛋白是只在High/Low pH RPLC分离策略中鉴定到的,而用SDS-PAGE分离,则可以鉴定到其它389种蛋白。从这个图上看,两种方法有互补性。
右下角的四幅小图说明,当我们在做分级分离时,分的级别越多,能鉴定到的蛋白也就越多。不过这种增长并不是呈线性关系的,分级的级数达到一定程度时,能鉴定到的蛋白数量的增长就会饱和。所以比较省时省力又能保证效果的做法时,选择一个合适的分级数即可。
我们来看一下目前发表的文献里,利用多级分离所能鉴定到的蛋白数量。
一篇2013年发表在MCP上的文献报道,采用RP-RPLC两级分离,分成常规的24个馏分,上样量为100μg,在一天内能检测到8000多个蛋白。
一篇2013年发表在Nat Comm上的文献报道,先采用RP柱分级,再使用SAX分离,然后通过1米的长柱子反相色谱分离。样品为人的胚胎干细胞,上样量仍然为100μg,在线分离8天检测了9818个蛋白,如果分离时间延长到24天,则可以检测13075个蛋白。
一篇2014年发表在Nat Method上的文献报道,采用IEF(等电聚焦电泳,isoelectric focusing)与RPLC结合,样品是人的上皮癌细胞,上样量为800μg,分成了360个馏分,耗时超过15天,一共分析到13078个蛋白。
就像前面说到的,对蛋白及多肽分离的级数越多,能鉴定到的蛋白也就越多,但常常因为机时的限制,再加上这种变化趋势到一定程度总会饱和,所以我们通常有个权衡。比如常规的分10个馏分,基本上可以鉴定到5000-8000个蛋白。如果是血清样品,可以馏分更多一些,尤其是RPLC一维,如果分到40或60个馏分,再合并为10或20个馏分,比直接分成10个或20个馏分能鉴定到的蛋白要多30%左右!
Tips :
对于分馏分,通常是利用C18的色谱柱来分级分馏分,这个没有试剂盒。
‘柒’ 质谱检测是什么呢
质谱检测是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。
质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。
在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。
质谱检测技术的应用:
质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。
随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。
以上内容参考:网络-质谱